SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Simoff Ivailo 1971 ) srt2:(2009)"

Sökning: WFRF:(Simoff Ivailo 1971 ) > (2009)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Simoff, Ivailo, 1971-, et al. (författare)
  • Functional characterization of ribosomal protein L15 from Saccaromyces cerevisiae
  • 2009
  • Ingår i: Current Genetics. - : Springer Science and Business Media LLC. - 0172-8083 .- 1432-0983. ; 55:2, s. 111-125
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study we provide general information on the little studied eukaryotic ribosomal protein rpL15. Saccharomyces cerevisiae has two genes, YRPL15A and YRPL15B that could potentially code for yeast rpL15 (YrpL15). YRPL15A is essential while YRPL15B is dispensable. However, a plasmid-borne copy of the YRPL15B gene, controlled by the GAL1 promoter or by the promoter controlling expression of the YRPL15A gene, can functionally complement YrpL15A in yeast cells, while the same gene controlled by the authentic promoter is inactive. Analysis of the levels of YrpL15B-mRNA in yeast cells shows that the YRPL15B gene is inactive in transcription. The function of YrpL15A is highly resilient to single and multiple amino acid substitutions. In addition, minor deletions from both the N- and C-terminal ends of YrpL15A has no effect on protein function, while addition of a C-terminal tag that could be used for detection of plasmid-encoded YrpL15A is detrimental to protein function. YrpL15A could also be replaced by the homologous protein from Arabidopsis thaliana despite almost 30% differences in the amino acid sequence, while the more closely related protein from Schizosaccharomyces pombe was inactive. The lack of function was not caused by a failure of the protein to enter the yeast nucleus.
  •  
2.
  • Simoff, Ivailo, 1971- (författare)
  • Ribosomal proteins L5 and L15 : Functional characterisation of important features, in vivo
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Protein synthesis is a highly regulated and energy consuming process, during which a large ribonucleoprotein particle called the ribosome, synthesizes new proteins. The eukaryotic ribosome consists of two unequal subunits called: small and large subunits. Both subunits are composed of ribosomal RNA (rRNA) and ribosomal proteins (r-proteins). Although rRNAs build the matrix of the ribosome and carries out catalysing of the peptide-bond formation between amino acids, r-proteins also appear to play important structural and functional roles. The primary role of r-proteins is to initiate the correct tertiary fold of rRNA and to organize the overall structure of the ribosome. In this thesis, I focus on two proteins from the large subunit of the eukaryotic ribosome: r-proteins L5 and L15 from bakers yeast S. cerevisiae. Both r-proteins are essential for ribosome function. Their life cycle is primarily associated with rRNA interactions. As a consequence, the proteins show high sequence homology across the species borders. Furthermore, both L5 and L15 are connected to human diseases, which makes the study their role in ribosome biogenesis and ribosome function important. By applying random- and site-directed mutagenesis, coupled with functional complementation tests, I aimed to elucidate functionally regions in both proteins, implicated in transport to the cell nucleus, protein-protein interactions and/or rRNA binding. The importance of individual and multiple amino acid exchanges in the primary sequence of rpL5 and rpL15 were studied in vivo. The obtained results show that S. cerevisiae rpL15 was tolerant to amino acid exchanges in the primary sequence, whereas rpL5 was not. Consequently, A. thaliana rpL15 could substitute for the function of wild type rpL15, whereas none of the tested orthologous proteins to rpL5 could substitute yeast rpL5 in vivo. These observations further emphasize the importance of studying r-proteins as separate entities in the ribosome context.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy