SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Singer Florian) srt2:(2011-2014)"

Sökning: WFRF:(Singer Florian) > (2011-2014)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pokorny, Florian T., 1980- (författare)
  • The Bergman Kernel on Toric Kähler Manifolds
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Let $(L,h)\to (X, \omega)$ be a compact toric polarized Kähler manifold of complex dimension $n$. For each $k\in N$, the fibre-wise Hermitian metric $h^k$ on $L^k$ induces a natural inner product on the vector space $C^{\infty}(X, L^k)$ of smooth global sections of $L^k$ by integration with respect to the volume form $\frac{\omega^n}{n!}$. The orthogonal projection $P_k:C^{\infty}(X, L^k)\to H^0(X, L^k)$ onto the space $H^0(X, L^k)$ of global holomorphic sections of $L^k$ is represented by an integral kernel $B_k$ which is called the Bergman kernel (with parameter $k\in N$). The restriction $\rho_k:X\to R$ of the norm of $B_k$ to the diagonal in $X\times X$ is called the density function of $B_k$. On a dense subset of $X$, we describe a method for computing the coefficients of the asymptotic expansion of $\rho_k$ as $k\to \infty$ in this toric setting. We also provide a direct proof of a result which illuminates the off-diagonal decay behaviour of toric Bergman kernels. We fix a parameter $l\in N$ and consider the projection $P_{l,k}$ from $C^{\infty}(X, L^k)$ onto those global holomorphic sections of $L^k$ that vanish to order at least $lk$ along some toric submanifold of $X$. There exists an associated toric partial Bergman kernel $B_{l, k}$ giving rise to a toric partial density function $\rho_{l, k}:X\to R$. For such toric partial density functions, we determine new asymptotic expansions over certain subsets of $X$ as $k\to \infty$. Euler-Maclaurin sums and Laplace's method are utilized as important tools for this. We discuss the case of a polarization of $CP^n$ in detail and also investigate the non-compact Bargmann-Fock model with imposed vanishing at the origin. We then discuss the relationship between the slope inequality and the asymptotics of Bergman kernels with vanishing and study how a version of Song and Zelditch's toric localization of sums result generalizes to arbitrary polarized Kähler manifolds. Finally, we construct families of induced metrics on blow-ups of polarized Kähler manifolds. We relate those metrics to partial density functions and study their properties for a specific blow-up of $C^n$ and $CP^n$ in more detail.
  •  
2.
  • Pokorny, Florian T., et al. (författare)
  • Toric partial density functions and stability of toric varieties
  • 2014
  • Ingår i: Mathematische Annalen. - : Springer Science and Business Media LLC. - 0025-5831 .- 1432-1807. ; 358:3-4, s. 879-923
  • Tidskriftsartikel (refereegranskat)abstract
    • Let (L, h) -> (X, omega) denote a polarized toric Kahler manifold. Fix a toric submanifold Y and denote by (rho) over cap (tk) : X -> R the partial density function corresponding to the partial Bergman kernel projecting smooth sections of L-k onto holomorphic sections of L-k that vanish to order at least tk along Y, for fixed t > 0 such that tk is an element of N. We prove the existence of a distributional expansion of (rho) over cap (tk) as k -> infinity, including the identification of the coefficient of k(n-1) as a distribution on X. This expansion is used to give a direct proof that if omega has constant scalar curvature, then (X, L) must be slope semi-stable with respect to Y (cf. Ross and Thomas in J Differ Geom 72(3): 429-466, 2006). Similar results are also obtained for more general partial density functions. These results have analogous applications to the study of toric K-stability of toric varieties.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy