SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Singh Jay P.) srt2:(2020-2023)"

Sökning: WFRF:(Singh Jay P.) > (2020-2023)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
2.
  • Maurya, Jay Prakash, et al. (författare)
  • A genetic framework for regulation and seasonal adaptation of shoot architecture in hybrid aspen
  • 2020
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 117, s. 11523-11530
  • Tidskriftsartikel (refereegranskat)abstract
    • Shoot architecture is critical for optimizing plant adaptation and productivity. In contrast with annuals, branching in perennials native to temperate and boreal regions must be coordinated with seasonal growth cycles. How branching is coordinated with seasonal growth is poorly understood. We identified key components of the genetic network that controls branching and its regulation by seasonal cues in the model tree hybrid aspen. Our results demonstrate that branching and its control by seasonal cues is mediated by mutually antagonistic action of aspen orthologs of the flowering regulators TERMINAL FLOWER 1 (TFL1) and APETALA1 (LIKE APETALA 1/LAP1). LAP1 promotes branching through local action in axillary buds. LAP1 acts in a cytokinin-dependent manner, stimulating expression of the cellcycle regulator AIL1 and suppressing BRANCHED1 expression to promote branching. Short photoperiod and low temperature, the major seasonal cues heralding winter, suppress branching by simultaneous activation of TFL1 and repression of the LAP1 pathway. Our results thus reveal the genetic network mediating control of branching and its regulation by environmental cues facilitating integration of branching with seasonal growth control in perennial trees.
  •  
3.
  • Mishra, Suneeti, et al. (författare)
  • Rapid night-time nanoparticle growth in Delhi driven by biomass-burning emissions
  • 2023
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 16:3, s. 224-230
  • Tidskriftsartikel (refereegranskat)abstract
    • Natural and anthropogenic biomass burning are among the major sources of particulate pollution worldwide that affects air quality, climate and human health. Delhi, one of the world’s most populated cities, experiences severe haze events caused by particulate pollution during winter, but the underlying pathways remain poorly understood. Here we observe intense and frequent nocturnal particle growth events during haze development in Delhi from measurements of aerosols and gases during January–February at the Indian Institute of Technology in Delhi. The particle growth events occur systematically despite the unfavourable condition for new-particle formation, including the lack of photochemical production of low-volatility vapours and considerable loss of vapours under extremely polluted conditions. We estimate that this process is responsible for 70% of the total particle-number concentration during haze. We identify that the condensation of primary organic vapours from biomass burning is the leading cause of the observed growth. The sharp decrease in night-time temperatures and rapid increase in biomass-burning emissions drive these primary organic vapours out of equilibrium, resulting in their condensation and the growth of nanoparticles into sizes relevant for haze formation. This high impact of primary biomass-burning emissions on night-time nanoparticle growth is unique compared with most urban locations globally, where low-volatility vapours formed through oxidation during the day drive particle growth and haze formation. As uncontrolled biomass burning for residential heating and cooking is rife in the Indo–Gangetic plain, we expect this growth mechanism to be a source of ultrafine particles, affecting the health of 5% of the world’s population and impacting the regional climate. Our work implies that regulating uncontrolled biomass-combustion emissions may help inhibit nocturnal haze formation and improve human health in India.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy