SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sipponen Mika H.) srt2:(2022)"

Sökning: WFRF:(Sipponen Mika H.) > (2022)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • A. da Cruz, Márcia G., et al. (författare)
  • Electrochemical Depolymerization of Lignin in a Biomass-based Solvent
  • 2022
  • Ingår i: ChemSusChem. - : Wiley. - 1864-5631 .- 1864-564X. ; 15:15
  • Tidskriftsartikel (refereegranskat)abstract
    • Breaking down lignin into smaller units is the key to generate high value-added products. Nevertheless, dissolving this complex plant polyphenol in an environment-friendly way is often a challenge. Levulinic acid, which is formed during the hydrothermal processing of lignocellulosic biomass, has been shown to efficiently dissolve lignin. Herein, levulinic acid was evaluated as a medium for the reductive electrochemical depolymerization of the lignin macromolecule. Copper was chosen as the electrocatalyst due to the economic feasibility and low activity towards the hydrogen evolution reaction. After depolymerization, high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy revealed lignin-derived monomers and dimers. A predominance of aryl ether and phenolic groups was observed. Depolymerized lignin was further evaluated as an anti-corrosion coating, revealing enhancements on the electrochemical stability of the metal. Via a simple depolymerization process of biomass waste in a biomass-based solvent, a straightforward approach to produce high value-added compounds or tailored biobased materials was demonstrated. 
  •  
2.
  • Esakkimuthu, Esakkiammal Sudha, et al. (författare)
  • Multifunctional lignin-poly (lactic acid) biocomposites for packaging applications
  • 2022
  • Ingår i: Frontiers in Bioengineering and Biotechnology. - : Frontiers Media SA. - 2296-4185. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Lignin is the most abundant aromatic biopolymer with many promising features but also shortcomings as a filler in polymer blends. The main objective of this work was to improve the processability and compatibility of lignin with poly (lactic acid) (PLA) through etherification of lignin. Commercial kraft lignin (KL) and oxypropylated kraft lignin (OPKL) were blended with PLA at different weight percentages (1, 5, 10, 20, and 40%) followed by injection molding. Low lignin contents between 1 and 10% generally had a favorable impact on mechanical strength and moduli as well as functional properties of the PLA-based composites. Unmodified lignin with free phenolic hydroxyl groups rendered the composites with antioxidant activity, as measured by radical scavenging and lipid peroxidation tests. Incorporating 5–10% of KL or OPKL improved the thermal stability of the composites within the 300–350°C region. DSC analysis showed that the glass transition temperature values were systematically decreased upon addition of KL and OPKL into PLA polymer. However, low lignin contents of 1 and 5% decreased the cold crystallization temperature of PLA. The composites of KL and OPKL with PLA exhibited good stabilities in the migration test, with values of 17 mg kg−1 and 23 mg kg−1 even at higher lignin content 40%, i.e., well below the limit defined in a European standard (60 mg kg−1). These results suggest oxypropylated lignin as a functional filler in PLA for safe and functional food packaging and antioxidant applications.
  •  
3.
  • Liu, Jinrong, et al. (författare)
  • Fully Biobased Photothermal Films and Coatings for Indoor Ultraviolet Radiation and Heat Management
  • 2022
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 14:10, s. 12693-12702
  • Tidskriftsartikel (refereegranskat)abstract
    • Sustainable materials are needed to mitigate against the increase in energy consumption resulting from population growth and urbanization. Here, we report fully biobased nanocomposite films and coatings that display efficient photothermal activity and selective absorption of ultraviolet (UV) radiation. The nanocomposites with 20 wt % of lignin nanoparticles (LNPs) embedded in a chitosan matrix displayed an efficient UV blocking of 97% at 400 nm along with solar energy-harvesting properties. The reflectance spectra of the nanocomposite films revealed the importance of well-dispersed nanoparticles in the matrix to achieve efficient UV-blocking properties. Finally, yet importantly, we demonstrate the nanocomposites with 20 wt % LNPs as photothermal glass coatings for passive cooling of indoor temperature by simply tailoring the coating thickness. Under simulated solar irradiation of 100 mW/cm2, the 20 μm coating achieved a 58% decrease in the temperature increment in comparison to the system with uncoated glass. These renewable nanocomposite films and coatings are highly promising sustainable solutions to facilitate indoor thermal management and improve human health and well-being.
  •  
4.
  • Morsali, Mohammad, et al. (författare)
  • Stabilized Lignin Nanoparticles for Versatile Hybrid and Functional Nanomaterials
  • 2022
  • Ingår i: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 23:11, s. 4597-4606
  • Tidskriftsartikel (refereegranskat)abstract
    • Spherical lignin nanoparticles are emerging biobased nanomaterials, but instability and dissolution in organic solvents and aqueous alkali restrict their applicability. Here, we report the synthesis of hydroxymethylated lignin nanoparticles and their hydrothermal curing to stabilize the particles by internal cross-linking reactions. These colloidally stable particles contain a high biobased content of 97% with a tunable particle size distribution and structural stability in aqueous media (pH 3 to 12) and organic solvents such as acetone, ethanol, dimethylformamide, and tetrahydrofuran. We demonstrate that the free phenolic hydroxyl groups that are preserved in the cured particles function as efficient reducing sites for silver ions, giving rise to hybrid lignin–silver nanoparticles that can be used for quick and facile sensing of hydrogen peroxide. The stabilized lignin particles can also be directly modified using base-catalyzed reactions such as the ring-opening of cationic epoxides that render the particles with pH-dependent agglomeration and redispersion properties. Combining scalable synthesis, solvent stability, and reusability, this new class of lignin nanoparticles shows potential for its use in circular biobased nanomaterials. 
  •  
5.
  • Pylypchuk, Ievgen, et al. (författare)
  • Organic solvent-free production of colloidally stable spherical lignin nanoparticles at high mass concentrations
  • 2022
  • Ingår i: Green Chemistry. - : Royal Society of Chemistry (RSC). - 1463-9262 .- 1463-9270. ; 24:22, s. 8705-8715
  • Tidskriftsartikel (refereegranskat)abstract
    • Lignin nanoparticles have emerged during the past decade as well-defined and renewable nanomaterials for fundamental and applied research. However, the presently known methods for the preparation of lignin nanoparticles rely on the use of organic solvents and energy intensive water evaporation processes. Here we present organic solvent-free production of spherical lignin nanoparticles by neutralization of alkaline solution of poorly water-soluble lignins in the presence of sodium lignosulfonate. We show that by combining these two predominant technical lignins it is possible to achieve colloidally stable lignin nanoparticle dispersions at concentrations exceeding 30 wt%. We further demonstrate versatility of the process by using ethanol organosolv lignin, soda lignin, and lignosulfonates from different sources. The lignin nanoparticle dispersions exhibit shear-thinning behaviour and undergo gelation within well-defined pH and concentration regions. Such flowable lignin dispersions mark a breaktrough towards scalable processing of lignin towards sustainable bio-based chemicals and materials.
  •  
6.
  • Tarasov, Dmitry, et al. (författare)
  • AqSO biorefinery : a green and parameter-controlled process for the production of lignin-carbohydrate hybrid materials
  • 2022
  • Ingår i: Green Chemistry. - : Royal Society of Chemistry (RSC). - 1463-9262 .- 1463-9270. ; 24:17, s. 6639-6656
  • Tidskriftsartikel (refereegranskat)abstract
    • The current biorefineries are focused on the comprehensive fractionation of biomass components into separate lignin and carbohydrate fractions for the production of materials, platform chemicals and biofuel. However, it has become obvious that the combination of lignin and carbohydrates can have significant technical, environmental, and economic benefits as opposed to their separate use. Herein, we developed a green, simple, and flexible biorefinery concept for the integrated utilization of all major biomass components for high-value applications with the focus on functional lignin–carbohydrate hybrids (LCHs). The established process consisted of a modified hydrothermal treatment (HTT) of birch wood followed by solvent extraction of the resulting solids and is therefore named AquaSolv Omni (AqSO) biorefinery. The AqSO biorefinery produces three major streams: hydrolysate (hemicellulose-derived products), solvent-extracted lignin–carbohydrate complexes (LCCs) and cellulose-rich fibers. Specific process conditions were found to facilitate the production of LCCs of different types in high yields as a new valuable and industrially realistic process stream. The effect of the process severity and liquid to solid (L/S) ratio on the yields and compositions of the produced fractions as well as on the structure and properties of the extracted LCCs was investigated using state of the art NMR spectroscopy and molar mass distribution analysis among other methods. The high flexibility of the process allows for engineering of the resulting products in a wide range of chemical compositions, structures and physicochemical properties and therefore gives a good opportunity to optimize the products for specific high-value applications. The process can be easily combined with other biorefinery operations (e.g., enzymatic hydrolysis, pulping, bleaching) to be incorporated into existing value chains or create new ones and thus is suitable for different biorefinery scenarios. First examples of high-value applications of AqSO biorefinery LCHs are reported. LCC nanoparticles (LCCNPs) were produced for the first time directly from the solvent extract and their properties were investigated. LCCNPs could efficiently stabilize Pickering emulsions of tetrahydrofurfuryl methacrylate and allowed their free radical polymerization. In addition, AqSO LCHs showed promising results as wood adhesives. Overall, our results provide detailed information on the complex lignocellulosic fractions and bridge the gap from process engineering to sustainable product development.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy