SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Skagerberg Gunnar) srt2:(2000-2004)"

Search: WFRF:(Skagerberg Gunnar) > (2000-2004)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Björkman-Burtscher, Isabella, et al. (author)
  • Proton MR spectroscopy and preoperative diagnostic accuracy: an evaluation of intracranial mass lesions characterized by stereotactic biopsy findings
  • 2000
  • In: AJNR. - 1936-959X. ; 21:1, s. 84-93
  • Journal article (peer-reviewed)abstract
    • BACKGROUND AND PURPOSE: MR imaging has made it easier to distinguish among the different types of intracranial mass lesions. Nevertheless, it is sometimes impossible to base a diagnosis solely on clinical and neuroradiologic findings, and, in these cases, biopsy must be performed. The purpose of this study was to evaluate the hypothesis that proton MR spectroscopy is able to improve preoperative diagnostic accuracy in cases of intracranial tumors and may therefore obviate stereotactic biopsy. METHODS: Twenty-six patients with intracranial tumors underwent MR imaging, proton MR spectroscopy, and stereotactic biopsy. MR spectroscopic findings were evaluated for the distribution pattern of pathologic spectra (NAA/Cho ratio < 1) across the lesion and neighboring tissue, for signal ratios in different tumor types, and for their potential to improve preoperative diagnostic accuracy. RESULTS: Gliomas and lymphomas showed pathologic spectra outside the area of contrast enhancement while four nonastrocytic circumscribed tumors (meningioma, pineocytoma, metastasis, and germinoma) showed no pathologic spectra outside the region of enhancement. No significant correlation was found between different tumor types and signal ratios. MR spectroscopy improved diagnostic accuracy by differentiating infiltrative from circumscribed tumors; however, diagnostic accuracy was not improved in terms of differentiating the types of infiltrative or circumscribed lesions. CONCLUSION: MR spectroscopy can improve diagnostic accuracy by differentiating circumscribed brain lesions from histologically infiltrating processes, which may be difficult or impossible solely on the basis of clinical or neuroradiologic findings.
  •  
2.
  •  
3.
  •  
4.
  • Salford, Leif, et al. (author)
  • Search for effective therapy against glioblastoma multiforme - Clinical immunisation with autologous glioma cells transduced with the human interferon-gamma gene
  • 2002
  • In: Developments in Neuroscience. Proceedings of the 2nd International Mt Bandai Symposium for Neuroscience 2001. - 0531-5131. ; 1247, s. 211-220
  • Conference paper (peer-reviewed)abstract
    • Based upon earlier experimental work by our group, we have started a human immuno-gene therapy study. The goal is to study the effects of immunisation with autologous tumour cells expressing gene sequences for human interferon-gamma For more than two decades we have sought for efficient treatment against malignant gliomas. Our most successful treatment in the animal models is immuno-gene therapy where murine genes for the cytokines IFN-gamma, IL-7 and B7-1 were chosen for their ability to stimulate different stages of the pathway for cytotoxic T lymphocyte (CTL) activation. Rats of the syngeneic inbred strain Fischer 344 had rat glioma cells of the N32 line inoculated in the right caudate nucleus, and 1 or 3 days later N32 cells transfected with either IFN-gamma, IL-7 or B7-1 genes were injected subcutaneously (and in some studies intraperitoneally). This treatment was repeated three to four times with 7- to 14-day interval and resulted in significantly improved survival compared with treatment with wild-type rat glioma cells (e.g. not transfected with the cytokine genes). The continued work concentrated on treatment with IFN-gamma secreting tumour cells of both the N32 line and also a newly developed ENU-induced rat glioma cell line called N29. This work proved the effectiveness of the technique. Cure was achieved in 72% of the animals treated with the IFN-gamma cells. Tumour-infiltrating leukocytes from N32-IFN-gamma-immunised animals showed a significantly stronger infiltration by CD8+ T-cells, significantly more NK cells, and an increased number of CD25-expressing T-cells. These results confirmed the possible usefulness of IFN-gamma-transfected tumour cells in the immune-therapy of rat brain tumours. The animal experiments have motivated us to start a human immuno-gene therapy study including 20 patients with glioblastoma multiforme (GBM), where >80% of the tumour can be surgically removed. The goal is to ascertain whether immunisation with autologous tumour cells expressing gene sequences for human interferon-gamma is safe for the patients, gives rise to an immunological response, and adds any beneficial effect to conventional therapy (tumour growth, prolonged survival). Hitherto, nine patients have been included in the study, two of which have received 6 and 10 immunisations, respectively. Two patients have died from their disease before cells have been ready for immunisation; in two cases no malignant cells have appeared in the cell cultures and three patients are ready to start their immunisation shortly. The immunisation takes place in the dermis of the upper arm. Seven days after each immunisation, a skin biopsy is taken from the centre of one of the injection sites. The composition of the cellular infiltration in the skin is studied by markers for T lymphocytes (CD3); helper cells, subset of T cells (CD4); killer cells, subset of T cells (CD8); natural killer cells (CD16) and B lymphocytes, B cells (CD20). Also the expression of cytokines for functional T cell subsets are studied: IL-2, IL-4, IL-10, IL-12, IL-18, TNF-alpha and IF-gamma and TGF-beta(1,2 and 3-) Peripheral blood is sampled both before and after operation and also after each immunisation event. Co-culture of this blood with tumour cells from the patient allows for a selection of T-cells that can recognise tumour-specific antigens. The results from the first human treatments are presented. (C) 2002 Published by Elsevier Science B.V.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view