SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Smit Egbert F) srt2:(2010-2014)"

Sökning: WFRF:(Smit Egbert F) > (2010-2014)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • van der Veldt, Astrid A M, et al. (författare)
  • Absolute Quantification of [11C]docetaxel Kinetics in Lung Cancer Patients Using Positron Emission Tomography
  • 2011
  • Ingår i: Clinical Cancer Research. - 1078-0432 .- 1557-3265. ; 17:14, s. 4814-4824
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose:Tumor resistance to docetaxel may be associated with reduced drug concentrations in tumor tissue. Positron emission tomography (PET) allows for quantification of radiolabeled docetaxel ([11C]docetaxel) kinetics and might be useful for predicting response to therapy. The primary objective was to evaluate the feasibility of quantitative [11C]docetaxel PET scans in lung cancer patients. The secondary objective was to investigate whether [11C]docetaxel kinetics were associated with tumor perfusion, tumor size, and dexamethasone administration.Experimental Design:Thirty-four lung cancer patients underwent dynamic PET–computed tomography (CT) scans using [11C]docetaxel. Blood flow was measured using oxygen-15 labeled water. The first 24 patients were premedicated with dexamethasone. For quantification of [11C]docetaxel kinetics, the optimal tracer kinetic model was developed and a noninvasive procedure was validated.Results:Reproducible quantification of [11C]docetaxel kinetics in tumors was possible using a noninvasive approach (image derived input function). Thirty-two lesions (size ≥4 cm3) were identified, having a variable net influx rate of [11C]docetaxel (range, 0.0023–0.0229 mL·cm−3·min−1). [11C]docetaxel uptake was highly related to tumor perfusion (Spearman's ρ = 0.815;P < 0.001), but not to tumor size (Spearman's ρ = −0.140; P = 0.446). Patients pretreated with dexamethasone showed lower [11C]docetaxel uptake in tumors (P = 0.013). Finally, in a subgroup of patients who subsequently received docetaxel therapy, relative high [11C]docetaxel uptake was related with improved tumor response.Conclusions:Quantification of [11C]docetaxel kinetics in lung cancer was feasible in a clinical setting. Variable [11C]docetaxel kinetics in tumors may reflect differential sensitivity to docetaxel therapy. Our findings warrant further studies investigating the predictive value of [11C]docetaxel uptake and the effects of comedication on [11C]docetaxel kinetics in tumors.
  •  
2.
  • van der Veldt, Astrid A M, et al. (författare)
  • Quantitative Parametric Perfusion Images Using 15O-Labeled Water and a Clinical PET/CT Scanner : test-retest variability in lung cancer
  • 2010
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 51:11, s. 1684-1690
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantification of tumor perfusion using radioactive water (H215O) and PET is a promising method for monitoring treatment with antiangiogenic agents. However, use of dynamic H215O scans together with a fully 3-dimensional clinical PET/CT scanner needs to be validated. The purpose of the present study was to assess validity and reproducibility of dynamic H215O PET/CT scans for measuring tumor perfusion and validate the quantitative accuracy of parametric perfusion images.Methods:Eleven patients with non–small cell lung cancer were included in this study. Patients underwent 2 dynamic H215O (370 MBq) PET scans on the same day. During the first scan, arterial blood was withdrawn continuously. Input functions were derived from blood sampler data and the ascending aorta as seen in the images themselves (image-derived input function [IDIF]). Parametric perfusion images were computed using a basis function implementation of the standard single-tissue-compartment model. Volumes of interest (VOIs) were delineated on low-dose CT (LD-CT) and parametric perfusion images.Results:VOIs could be accurately delineated on both LD-CT and parametric perfusion images. These parametric perfusion images had excellent image quality and quantitative accuracy when compared with perfusion values determined by nonlinear regression. Good correlation between perfusion values derived from the blood sampler input function and IDIF was found (Pearson correlation coefficient, r = 0.964; P < 0.001). Test–retest variability of tumor perfusion was 16% and 20% when delineated on LD-CT and parametric perfusion images, respectively.Conclusion:The use of ascending aorta IDIFs is an accurate alternative to arterial blood sampling for quantification of tumor perfusion. Image quality obtained with a clinical PET/CT scanner enables generation of accurate parametric perfusion images. VOIs delineated on LD-CT have the highest reproducibility, and changes of more than 16% in tumor perfusion are likely to represent treatment effects.
  •  
3.
  • van der Veldt, Astrid A. M., et al. (författare)
  • Toward Prediction of Efficacy of Chemotherapy : A Proof of Concept Study in Lung Cancer Patients Using [11C]docetaxel and Positron Emission Tomography
  • 2013
  • Ingår i: Clinical Cancer Research. - 1078-0432 .- 1557-3265. ; 19:15, s. 4163-4173
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose:Pharmacokinetics of docetaxel can be measured in vivo using positron emission tomography (PET) and a microdose of radiolabeled docetaxel ([11C]docetaxel). The objective of this study was to investigate whether a [11C]docetaxel PET microdosing study could predict tumor uptake of therapeutic doses of docetaxel.Experimental Design:Docetaxel-naïve lung cancer patients underwent 2 [11C]docetaxel PET scans; one after bolus injection of [11C]docetaxel and another during combined infusion of [11C]docetaxel and a therapeutic dose of docetaxel (75 mg·m−2). Compartmental and spectral analyses were used to quantify [11C]docetaxel tumor kinetics. [11C]docetaxel PET measurements were used to estimate the area under the curve (AUC) of docetaxel in tumors. Tumor response was evaluated using computed tomography scans.Results:Net rates of influx (Ki) of [11C]docetaxel in tumors were comparable during microdosing and therapeutic scans. [11C]docetaxel AUCTumor during the therapeutic scan could be predicted reliably using an impulse response function derived from the microdosing scan together with the plasma curve of [11C]docetaxel during the therapeutic scan. At 90 minutes, the accumulated amount of docetaxel in tumors was less than 1% of the total infused dose of docetaxel. [11C]docetaxel Ki derived from the microdosing scan correlated with AUCTumor of docetaxel (Spearman ρ = 0.715; P = 0.004) during the therapeutic scan and with tumor response to docetaxel therapy (Spearman ρ = −0.800; P = 0.010).Conclusions:Microdosing data of [11C]docetaxel PET can be used to predict tumor uptake of docetaxel during chemotherapy. The present study provides a framework for investigating the PET microdosing concept for radiolabeled anticancer drugs in patients.
  •  
4.
  • Bahce, Idris, et al. (författare)
  • Development of [11C]erlotinib Positron Emission Tomography for In Vivo Evaluation of EGF Receptor Mutational Status
  • 2013
  • Ingår i: Clinical Cancer Research. - 1078-0432 .- 1557-3265. ; 19:1, s. 183-193
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: To evaluate whether, in patients with non-small cell lung carcinoma (NSCLC), tumor uptake of [(11)C]erlotinib can be quantified and imaged using positron emission tomography and to assess whether the level of tracer uptake corresponds with the presence of activating tumor EGF receptor (EGFR) mutations.EXPERIMENTAL DESIGN: Ten patients with NSCLCs, five with an EGFR exon 19 deletion, and five without were scanned twice (test retest) on the same day with an interval of at least 4 hours. Each scanning procedure included a low-dose computed tomographic scan, a 10-minute dynamic [(15)O]H(2)O scan, and a 1-hour dynamic [(11)C]erlotinib scan. Data were analyzed using full tracer kinetic modeling. EGFR expression was evaluated using immunohistochemistry.RESULTS: The quantitative measure of [(11)C]erlotinib uptake, that is, volume of distribution (V(T)), was significantly higher in tumors with activating mutations, that is, all with exon 19 deletions (median V(T), 1.76; range, 1.25-2.93), than in those without activating mutations (median V(T), 1.06; range, 0.67-1.22) for both test and retest data (P = 0.014 and P = 0.009, respectively). Good reproducibility of [(11)C]erlotinib V(T) was seen (intraclass correlation coefficient = 0.88). Intergroup differences in [(11)C]erlotinib uptake were not correlated with EGFR expression levels, nor tumor blood flow.CONCLUSION: [(11)C]erlotinib V(T) was significantly higher in NSCLCs tumors with EGFR exon 19 deletions.
  •  
5.
  • de Langen, Adrianus J, et al. (författare)
  • Monitoring response to antiangiogenic therapy in non-small cell lung cancer using imaging markers derived from PET and dynamic contrast-enhanced MRI
  • 2011
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 52:1, s. 48-55
  • Tidskriftsartikel (refereegranskat)abstract
    • With antiangiogenic agents, tumor shrinkage may be absent, despite survival benefit. The present study assessed the predictive value of molecular imaging for the identification of survival benefit during antiangiogenic treatment with bevacizumab and erlotinib in patients with advanced non–small cell lung cancer.Methods:Patients were evaluated using an imaging protocol including CT, 18F-FDG PET, H215O PET, and dynamic contrast-enhanced MRI to derive measurements on tumor size, glucose metabolism, perfusion, and microvascular permeability. The percentage change in imaging parameters after 3 wk of treatment as compared with baseline was calculated and correlated with progression-free survival (PFS).Results:Forty-four patients were included, and 40 underwent CT and 18F-FDG PET at both time points. Complete datasets, containing all imaging modalities, were available for 14 patients. Bevacizumab and erlotinib treatment resulted in decreased metabolism, perfusion, and tumor size. A decrease in standardized uptake value or tumor perfusion of more than 20% at week 3 was associated with longer PFS (9.7 vs. 2.8 mo, P = 0.01, and 12.5 vs. 2.9 mo, P = 0.009, respectively). Whole-tumor Ktrans (the endothelial transfer constant) was not associated with PFS, but patients with an increase of more than 15% in the SD of tumor Ktrans values—that is, an increase in regions with low or high Ktrans values—after 3 wk had shorter PFS (2.3 vs. 7.0 mo, P = 0.008). A partial response, according to the response evaluation criteria in solid tumors (RECIST), at week 3 was also associated with prolonged PFS (4.6 vs. 2.9 mo, P = 0.017). However, 40% of patients with a partial response as their best RECIST response still had stable disease at week 3. In these cases tumor perfusion was already decreased and Ktrans heterogeneity showed no increase, indicating that the latter parameters seem to be more discriminative than RECIST at the 3-wk time point.Conclusion:PET and dynamic contrast-enhanced MRI were able to identify patients who benefit from bevacizumab and erlotinib treatment. Molecular imaging seems to allow earlier response evaluation than CT.
  •  
6.
  •  
7.
  • van der Veldt, Astrid A. M., et al. (författare)
  • Rapid Decrease in Delivery of Chemotherapy to Tumors after Anti-VEGF Therapy : Implications for Scheduling of Anti-Angiogenic Drugs
  • 2012
  • Ingår i: Cancer Cell. - : Elsevier BV. - 1535-6108 .- 1878-3686. ; 21:1, s. 82-91
  • Tidskriftsartikel (refereegranskat)abstract
    • Current strategies combining anti-angiogenic drugs with chemotherapy provide clinical benefit in cancer patients. It is assumed that anti-angiogenic drugs, such as bevacizumab, transiently normalize abnormal tumor vasculature and contribute to improved delivery of subsequent chemotherapy. To investigate this concept, a study was performed in non-small cell lung cancer (NSCLC) patients using positron emission tomography (PET) and radiolabeled docetaxel ([11C]docetaxel). In NSCLC, bevacizumab reduced both perfusion and net influx rate of [11C]docetaxel within 5 hr. These effects persisted after 4 days. The clinical relevance of these findings is notable, as there was no evidence for a substantial improvement in drug delivery to tumors. These findings highlight the importance of drug scheduling and advocate further studies to optimize scheduling of anti-angiogenic drugs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy