SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Snaith Henry J.) srt2:(2017)"

Sökning: WFRF:(Snaith Henry J.) > (2017)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bai, Sai, et al. (författare)
  • Reproducible Planar Heterojunction Solar Cells Based on One-Step Solution-Processed Methylammonium Lead Halide Perovskites
  • 2017
  • Ingår i: Chemistry of Materials. - : AMER CHEMICAL SOC. - 0897-4756 .- 1520-5002. ; 29:1, s. 462-473
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal halide perovskites have been demonstrated as one of the most promising materials for low-cost and high-performance photovoltaic applications. However, due to the susceptible crystallization process of perovskite films on planar substrates and the high sensitivity of the physical and optoelectronic nature of the internal interfaces within the devices, researchers in different laboratories still experience poor reproducibility in fabricating efficient perovskite solar cells with planar heterojunction device structures. In this method paper, we present detailed information on the reagents, equipment, and procedures for the fabrication of planar perovskite solar cells in both "regular" n-i-p and "inverted" p-i-n architectures based on one-step solution-processed methylammonium lead triiodide (MAPbI(3)) perovskite films. We discuss key parameters affecting the crystallization of perovskite and the device interfaces. This method paper will provide a guideline for the reproducible fabrication of planar heterojunction solar cells based on MAPbI3 perovskite films. We believe that the shared experience on MA-based perovskite films and planar solar cells will be also useful for the optimization process of perovskites with varied compositions, and other emerging perovskite-based optoelectronic devices.
  •  
2.
  • Klug, Matthew T., et al. (författare)
  • Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties
  • 2017
  • Ingår i: Energy & Environmental Science. - : ROYAL SOC CHEMISTRY. - 1754-5692 .- 1754-5706. ; 10:1, s. 236-246
  • Tidskriftsartikel (refereegranskat)abstract
    • We present herein an experimental screening study that assesses how partially replacing Pb in methylammonium lead triiodide perovskite films with nine different alternative, divalent metal species, B = {Co, Cu, Fe, Mg, Mn, Ni, Sn, Sr, and Zn}, influences photovoltaic performance and optical properties. Our findings indicate the perovskite film is tolerant to most of the considered homovalent metal species with lead-cobalt compositions yielding the highest power conversion efficiencies when less than 6% of the Pb2+ ions are replaced. Through subsequent materials characterisation, we demonstrate for the first time that partially substituting Pb2+ at the B-sites of the perovskite lattice is not restricted to Group IV elements but is also possible with at least Co2+. Moreover, adjusting the molar ratio of Pb: Co in the mixed-metal perovskite affords new opportunities to tailor the material properties while maintaining stabilised device efficiencies above 16% in optimised solar cells. Specifically, crystallographic analysis reveals that Co2+ incorporates into the perovskite lattice and increasing its concentration can mediate a crystal structure transition from the cubic to tetragonal phase at room-temperature. Likewise, Co2+ substitution continually modifies the perovskite work function and band edge energies without either changing the band gap or electronically doping the intrinsic material. By leveraging this orthogonal dimension of electronic tunability, we achieve remarkably high open-circuit voltages up to 1.08 V with an inverted device architecture by shifting the perovskite into a more favourable energetic alignment with the PEDOT: PSS hole transport material.
  •  
3.
  • Sun, Qing, et al. (författare)
  • Role of Microstructure in Oxygen Induced Photodegradation of Methylammonium Lead Triiodide Perovskite Films
  • 2017
  • Ingår i: Advanced Energy Materials. - : WILEY-V C H VERLAG GMBH. - 1614-6832 .- 1614-6840. ; 7:20
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper investigates the impact of microstructure on the degradation rate of methylammonium lead triiodide (MAPbI(3)) perovskite films upon exposure to light and oxygen. By comparing the oxygen induced degradation of perovskite films of different microstructure-fabricated using either a lead acetate trihydrate precursor or a solvent engineering technique-it is demonstrated that films with larger and more uniform grains and better electronic quality show a significantly reduced degradation compared to films with smaller, more irregular grains. The effect of degradation on the optical, compositional, and microstructural properties of the perovskite layers is characterized and it is demonstrated that oxygen induced degradation is initiated at the layer surface and grain boundaries. It is found that under illumination, irreversible degradation can occur at oxygen levels as low as 1%, suggesting that degradation can commence already during the device fabrication stage. Finally, this work establishes that improved thin-film microstructure, with large uniform grains and a low density of defects, is a prerequisite for enhanced stability necessary in order to make MAPbI(3) a promising long lived and low cost alternative for future photovoltaic applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy