SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sobkowiak Adam) srt2:(2017)"

Sökning: WFRF:(Sobkowiak Adam) > (2017)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Blidberg, Andreas, 1987-, et al. (författare)
  • Identifying the Electrochemical Processes in LiFeSO4F Cathodes for Lithium Ion Batteries
  • 2017
  • Ingår i: ChemElectroChem. - : Wiley. - 2196-0216. ; 4:8, s. 1896-1907
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The electrochemical performance of tavorite LiFeSO4F can be considerably improved by coating the material with a conducting polymer (poly(3,4-ethylenedioxythiophene); PEDOT). Herein, the mechanisms behind the improved performance are studied systematically by careful electrochemical analysis. It is shown that the PEDOT coating improves the surface reaction kinetics for the Li-ion insertion into LiFeSO4F. For such coated materials no kinetic limitations remain, and a transition from solid state to solution-based diffusion control was observed at 0.6 mA cm−2 (circa C/2). Additionally, the quantity of PEDOT is optimized to balance the weight added by the polymer and the improved electrochemical function. Post mortem analysis shows excellent stability for the LiFeSO4F-PEDOT composite, and maintaining the electronic wiring is the most important factor for stable electrochemical cycling of LiFeSO4F. The insights and the methodology used to determine the rate-controlling steps are readily transferable to other ion-insertion-based electrodes, and the findings are important for the development of improved battery electrodes.
  •  
2.
  • Chábera, Pavel, et al. (författare)
  • A low-spin Fe(iii) complex with 100-ps ligand-to-metal charge transfer photoluminescence
  • 2017
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 543:7647, s. 695-699
  • Tidskriftsartikel (refereegranskat)abstract
    • Transition-metal complexes are used as photosensitizers1, in light-emitting diodes, for biosensing and in photocatalysis2. A key feature in these applications is excitation from the ground state to a charge-transfer state3,4; the long charge-transfer-state lifetimes typical for complexes of ruthenium5 and other precious metals are often essential to ensure high performance. There is much interest in replacing these scarce elements with Earth-abundant metals, with iron6 and copper7 being particularly attractive owing to their low cost and non-toxicity. But despite the exploration of innovative molecular designs6,8,9,10, it remains a formidable scientific challenge11 to access Earth-abundant transition-metal complexes with long-lived charge-transfer excited states. No known iron complexes are considered12 photoluminescent at room temperature, and their rapid excited-state deactivation precludes their use as photosensitizers13,14,15. Here we present the iron complex [Fe(btz)3]3+ (where btz is 3,3′-dimethyl-1,1′-bis(p-tolyl)-4,4′-bis(1,2,3-triazol-5-ylidene)), and show that the superior σ-donor and π-acceptor electron properties of the ligand stabilize the excited state sufficiently to realize a long charge-transfer lifetime of 100 picoseconds (ps) and room-temperature photoluminescence. This species is a low-spin Fe(iii) d5 complex, and emission occurs from a long-lived doublet ligand-to-metal charge-transfer (2LMCT) state that is rarely seen for transition-metal complexes4,16,17. The absence of intersystem crossing, which often gives rise to large excited-state energy losses in transition-metal complexes, enables the observation of spin-allowed emission directly to the ground state and could be exploited as an increased driving force in photochemical reactions on surfaces. These findings suggest that appropriate design strategies can deliver new iron-based materials for use as light emitters and photosensitizers.
  •  
3.
  • Mindemark, Jonas, et al. (författare)
  • Mechanical Stabilization of Solid Polymer Electrolytes through Gamma Irradiation
  • 2017
  • Ingår i: Electrochimica Acta. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0013-4686 .- 1873-3859. ; 230, s. 189-195
  • Tidskriftsartikel (refereegranskat)abstract
    • Attaining sufficient mechanical stability is a challenge for high-performance solid polymer electrolytes, particularly at elevated temperatures. We have here characterized the viscoelastic properties of the nonpolyether host material poly(epsilon-caprolactone-co-trimethylene carbonate) with and without incorporated LiTFSI salt. While this electrolyte material performs well at room temperature, at 80 degrees C the material is prone to viscous flow. Through gamma-irradiation at a dose of 25 kGy, the material stabilizes such that it behaves as a rubbery solid even at low rates of deformation while retaining a high ionic conductivity necessary for use in solid-state Li batteries. The performance of the irradiated electrolyte was investigated in Li polymer half-cells (Li vs. LiFePO4) at both 80 degrees C and room temperature. In Contrast with the notably stable battery performance at low temperatures using the non-irradiated material, during cycling of the irradiated electrolytes detrimental instabilities were noted at both 80 degrees C and room temperature. The possible effects of both radiation damage to the electrolyte and impaired interfacial contacts due to the crosslinking indicate that a different procedure may be necessary in order to stabilize these electrolytes for use in battery cells capable of stable long-term operation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy