SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Solin Niclas) srt2:(2020-2024)"

Sökning: WFRF:(Solin Niclas) > (2020-2024)

  • Resultat 1-10 av 29
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fernandez-Benito, Amparo, et al. (författare)
  • Green and Scalable Biopolymer-Based Aqueous Polyelectrolyte Complexes for Zinc-Ion Charge Storage Devices
  • 2023
  • Ingår i: ChemElectroChem. - : WILEY-V C H VERLAG GMBH. - 2196-0216. ; 10:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Green and scalable materials are essential to fulfill the need of electrification for transitioning into a fossil-fuels free society, and sustainability is a requirement for all new technologies. Rechargeable batteries are one of the most important elements for electrification, enabling the transition to mobile electronics, electrical vehicles and grid storage. We here report synthesis and characterization of polyelectrolyte complexes of alginate and chitosan, both biopolymers deriving from the sea, for transport of zinc ions in hydrogel electrolytes. We have used vibrational spectroscopy, thermal measurements and microscopy, as well as transport measurements with ohmic or blocking contacts. The transference number for zinc ions is close to 1, the conductivity is approximate to 10 mS/cm, with stability at Zn interfaces seen through 7000 cycles in symmetric zinc//zinc cell. A zinc ion aqueous electrolyte was prepared from blends of chitosan and alginate, by using a simple and scalable route. These green zinc ion electrolytes exhibit a stability window up to 2 V, a zinc ion transference number close to 1, and electrochemical cyclability over 7000 cycles at interfaces to zinc. This biologically derived polyelectrolyte complex offers many possibilities for optimizing transport and stability at electrode interfaces.image
  •  
2.
  • Hanczyc, Piotr, et al. (författare)
  • Photonics of Hydrothermally Treated ß-Lactoglobulin Amyloids
  • 2024
  • Ingår i: SMALL SCIENCE. - : WILEY. - 2688-4046.
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased temperature and high pressure are applied to beta-lactoglobulin fibrils in the autoclave, resulting in the acquisition of a composite material comprised of partially disassembled amyloid fibrils and carbon dots. Confirmation of the preservation of the beta-sheet motif attributed to amyloids in the hydrothermally treated fibrils is obtained through wide-angle X-ray scattering and ThT assay. Z-scan analysis reveals a two-photon absorption (2PA) enhancement in the low-lying transition band (La) of tyrosine, while quantum chemical calculations demonstrate a correlation between the yield of 2PA and the interspace distance between aromatic residues. Overall, the intrinsic optical properties of amyloid fibrils treated in a subcritical water environment are found to be linked with the pi-conjugation of tyrosine units and their through-space coupling. The resulting composite material is employed as a coating for a commercial ultraviolet light-emitting diode lamp, showcasing the potential utility of sustainable biomaterials with improved optical properties for photonics applications. By subjecting beta-lactoglobulin fibrils to elevated temperature and pressure in autoclave, partially disassembled fibrils are generated. The study reveals a correlation between fluorescence and two-photon absorption and the spacing of aromatic residues, shedding light on the mechanism behind the improved optical properties of amyloid fibrils. Furthermore, the hydrothermally treated beta-lactoglobulin fibrils are utilized to coat ultraviolet light-emitting diode lamps. image (c) 2024 WILEY-VCH GmbH
  •  
3.
  • Hu, Jiwen, et al. (författare)
  • Selective colorimetric detection of copper (II) by a protein-based nanoprobe
  • 2021
  • Ingår i: Spectrochimica Acta Part A - Molecular and Biomolecular Spectroscopy. - : PERGAMON-ELSEVIER SCIENCE LTD. - 1386-1425 .- 1873-3557. ; 252
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, we report a novel protein-based nanoprobe (PNP) that can be employed for quantitative analysis of Cu2+ in pure water medium and real samples. Structurally, the proposed nanoprobe comprises a biofriendly protein (hen egg-white lysozyme (HEWL)) and a Cu2+-specific chromogenic agent, where HEWL acts as a nanocarrier encapsulating a structurally tailored rhodamine B derivate. The resulting PNP exhibits a hydrodynamic diameter of similar to 106 nm and efficiently disperses in water, enabling the detection of Cu2+ in pure aqueous systems without the aid of any organic co-solvents. The high sensitivity and selectivity of PNP allow the colorimetric detection of Cu2+ in the presence of other metal interferents with a low detection limit of 160 nM. The satisfying recovery of trace level Cu2+ in environmental samples demonstrate the great potential of employing PNP for the determination of Cu2+ in actual applications. Most importantly, the simple co-grinding method employing proteins and chromogenic agents provides a novel strategy to generate sensing systems that are useful detection of pollutants in aqueous samples. (C) 2021 Elsevier B.V. All rights reserved.
  •  
4.
  • Ji, Fuxiang, 1991- (författare)
  • Bandgap Engineering of Lead-Free Halide Double Perovskites
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Lead-free halide double perovskites (HDPs, A2BIBIIIX6) with attractive optical and electronic features are regarded as one of the most promising alternatives to overcome the toxicity and stability issues of lead halide perovskites. They provide a wide range of possible combinations and rich substitutional chemistry with interesting properties for various optoelectronic devices. However, the performance of state-of-the-art lead-free HDPs is not yet comparable to that of lead halide perovskites, especially in the photovoltaic field. One of the main reasons for this is that HDPs usually have large and/or indirect bandgaps, which limit their optical and optoelectronic properties in the visible and infrared region. In this thesis, we attempt to modify the bandgap and optical properties of HDPs using metal doping/alloying and crystallization control, as well as provide detailed understanding of the alloying at the atomic level. We also observe significant changes of the bandgap of HDPs at different temperatures (i.e., thermochromism) and uncover the reasons behind it. We first adopt the metal doping/alloying strategy to alter the absorption properties of benchmark HDPs Cs2AgBiBr6. By introducing Cu as the dopant in Cs2AgBiBr6, we significantly broaden the absorption edge from around 610 nm to around 860 nm. Systematic characterizations indicate that Cu doping introduces defect states (sub-bandgap states) in the bandgap, without changing the bandgap of Cs2AgBiBr6. Interestingly, these sub-bandgaps can generate considerable amount of band carriers upon optical excitation, making these double perovskites promising for near-infrared light detection. In parallel with the material modification using the metal doping/alloying strategy, the fundamental understanding of these doped/alloyed double perovskite is also of critical importance. In the second paper, we reveal the atomic-level structure of alloyed double perovskites by presenting a series of double perovskite alloys with the chemical formula Cs2AgIn1-xFexCl6 (x = 0-1) showing tunable bandgaps in the range of 2.8-1.6 eV. Our results show that Fe3+ substitutes In3+ in the lattice with the formation of [FeCl6]3−·[AgCl6]5− domains, which grow larger gradually as the Fe3+ concentration increases. It is noted that these domains could be further connected to form microscopically segregated Fe3+-rich phases in the double perovskite alloys. To narrow the bandgap of Cs2AgBiBr6, we also develop a crystallization control approach, where high temperature is employed to assist the single crystal growth. By simply increasing the crystal growth temperature from 60 oC to 150 oC, the bandgap of Cs2AgBiBr6 crystals can be reduced from 1.98 eV to 1.72 eV, which is the lowest reported bandgap for Cs2AgBiBr6 at ambient conditions. The underlying reason is hypothesized to be related to the increased level of Ag–Bi disorder in the crystal structure. Lastly, we observe an interesting reversible thermochromic behavior in HDPs Cs2NaFeCl6. Specifically, the optical bandgap of Cs2NaFeCl6 is reduced from 2.06 eV to 1.86 eV when the temperature increases from RT to 150 oC and turns back to its original value after cooling. Meanwhile, we observe lattice expansion during the heating/ cooling process without phase transition. Our first-principles calculation indicates that the underlying mechanism for the thermochromic phenomenon in Cs2NaFeCl6 is mainly related to the electron-phonon coupling. Although the development of HDPs is in its early stages, we believe that HDPs with impressive optical and electronic properties and rich substitutional chemistry have a bright future in optoelectronic and multifunctional applications. Our findings shed new light to the absorption and bandgap modulation of HDPs and provide new insights into the atomic-level structures of DPAs, which can help to develop efficient optoelectronic devices. 
  •  
5.
  • Jin, Yingzhi, 1991- (författare)
  • Organic electronic devices for solar energy conversion and storage
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis focuses on two types of organic electronic devices: organic photovoltaic (OPV) devices for solar energy conversion, and photo-capacitors for energy storage.OPVs have been under the focus of research for decades as an effective technique to convert solar energy to electricity. So far, the efficiency of bulk heterojunction OPV consisting donor and acceptor materials is approaching to 18% with non-fullerene acceptor (NFA), which make it close to commercialization. The process of charge generation and recombination are two competing processes in OPVs, since their requirements for the active layer morphology are contradictory. Large donor/acceptor interfaces facilitate charge generation but hinder the transporting pathways for charge transportation. The simultaneously enhanced charge generation and transportation are achieved by using the ternary strategy in my first paper. The fully mixed donors and NFAs are beneficial for the charge generation and fullerene is introduced as an extra electron transport channel. The hierarchical morphology of the blend film is confirmed by the TEM results. The voltage loss analyses indicate that the hierarchical morphology could suppress unfavorable charge transfer state and non-radiative recombination loss. In my second paper, efficient charge generation with low voltage loss are achieved in the solar cells by rational designing a series of NFAs. The detailed voltage losses are discussed in these binary systems, revealing the critical relationship between radiative efficiency and device performance.To harvest photocurrent in OPVs, long lifetime triplet excitons are highly expected to be good candidates. The potential of triplet materials in OPVs has been explored since 1970s. However, the performance of the triplet materials-based OPVs is far behind. The voltage loss in triplet OPVs is intensively studied in my third work. A higher open circuit voltage (0.88 V) is observed for Ir(FOtbpa)3-based devices than those of Ir(Ftbpa)3 (0.80 V) despite a lower charge transfer state energy. To understand above result, the voltage losses through radiative and non-radiative recombination pathways in two devices are quantitively investigated, which indicate a reduced non-radiative recombination loss in the Ir(FOtbpa)3-based devices.The fluctuation of sun irradiation resulting the unstable output power of solar cells. Therefore, it is important to store electricity of solar cells for later use. Integrated photo-capacitor (IPC), combining a solar cell and a super-capacitor by sharing one common electrode, is able to simultaneously realize the energy harvesting and storage. Building upon this advantage, IPC devices received tremendous research attention. In my fourth and last papers, we introduced super-capacitors to construct IPC devices with OPV device or modules. A free standing thick- PEDOT:PSS film is successfully integrated into an all solution-processed IPC device as the common electrode. Resulting devices demonstrate good performance and outstanding stability. With solar PV modules, a higher voltage can be generated and stored by asymmetric supercapacitors, which could be used as a portable power unit.
  •  
6.
  • Kim, Jung Yong, et al. (författare)
  • A DNA and Self-Doped Conjugated Polyelectrolyte Assembled for Organic Optoelectronics and Bioelectronics
  • 2020
  • Ingår i: Biomacromolecules. - : AMER CHEMICAL SOC. - 1525-7797 .- 1526-4602. ; 21:3, s. 1214-1221
  • Tidskriftsartikel (refereegranskat)abstract
    • Deoxyribonucleic acid (DNA) and a self-doped conjugated polyelectrolyte, poly(4-(2,3-dihydrothieno[3,4-b]-[1,4]dioxin-2-yl-methoxy)-1-butanesulfonic acid (PEDOT-S), are assembled for organic optoelectronics and bioelectronics. The DNAs helix-coil phase transition in water is studied as a function of composition by thermo-optical analysis. DNA and PEDOT-S are functionalized by using a surfactant, cetyltrimethylammonium chloride (CTMA), and DNA:CTMA, PEDOT-S:CTMA, and DNA:CTMA:PEDOT-S:CTMA complexes were characterized regarding thermal, optical, morphological, and structural properties. Finally, DNA and DNA:PEDOT-S mixtures are processed in water for fabricating organized films through brushing. The electrical properties of these films are characterized using an interdigitated electrode. The films show an electronic conductivity of similar to 10(-6)-10(-5) S/cm in a range of semiconductors.
  •  
7.
  • Kuang, Chaoyang, 1988- (författare)
  • Interface-Assisted Perovskite Modulations for High-Performance Light-Emitting Diodes
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Metal halide perovskites have emerged as a class of promising materials for a wide range of optoelectronic devices. Compared with traditional inorganic and organic semiconductors, perovskite materials can be easily processed via solution-based techniques at low temperatures and exhibit high photo-luminescence efficiency, outstanding colour purity, and superior charge transport properties, showing great promise for cost-effective and high-performance light-emitting diodes (LEDs).Since the first demonstration of room-temperature operating perovskite-based LEDs (PeLEDs) in 2014, various useful strategies on optimizing perovskite emissive materials and device structures have been developed, leading to notably enhanced device performance of PeLEDs during the last several years. Nevertheless, despite rapid progress in improving the external quantum efficiencies (EQEs) of PeLEDs, which are now approaching those of commercialized technologies, the operational stability of state-of-the-art PeLEDs remains poor, presenting a critical challenge for their practical applications and commercialization. Besides, a majority of the optimization strategies demonstrated for PeLEDs derivate from those developed for either perovskite photovoltaics or prevailing light-emitting technologies, e.g., organic- and quantum-dot-based LEDs. Although these strategies are helpful, more comprehensive investigations and in-depth understanding of factors affecting the property of perovskite emissive layers and the device performance of ensuing PeLEDs are highly desirable to foster further advancements of this promising technology.In this thesis, we focus our study on near-infrared PeLEDs based on triiodide perovskite emissive layers processed from precursor solutions. We systematically investigate the critical effects of precursors, substrates, and additives on the film quality of perovskite emissive layers. With the indepth understanding of the perovskite crystallization process, we developed a range of effective interface-assisted strategies on modulating the perovskite emissive layers, which enable us to achieve PeLEDs with high EQEs and excellent long-term operational stability beyond the state-of-the-art.In the first study, we unveiled the synergistic effect of precursor stoichiometry and interfacial reactions for PeLEDs. We reveal that ZnO efficiently deprotonates the organic cations, which promotes the formation of highly emissive perovskites from precursor solution with excess organic components, leading to the achievement of PeLEDs with a high EQE of 19.6 %. In the second study, we presented that such ZnO deprotonation process of excess organic cations can also assist the cation exchange process between cesium-formamidinium (FA-Cs) cation exchange, enabling low-temperature fabrication of pure-phase Cs-FA mixed cation perovskite films with widely tunable emissions peaking between 715 nm and 800 nm as well as high-performance devices with peak EQEs over 15%.In spite of enhanced device efficiency realized by the perovskite crystallization modulation, this ZnO deprotonation process places a detrimental effect on the stability of the PeLEDs, which can be accelerated by Joule heating and high electric fields during the device operation. In the third study, we, therefore, demonstrated the role of ZnO in catalyzing an efficient amidation reaction between incorporated dicarboxylic acid additives and excess FAI, preventing the above-mentioned harmful interfacial reaction. With this strategy, the operational half lifetime of the resulting PeLEDs was improved to 682 hours at 20 mA/cm2 while maintaining a high device efficiency of 18.6%.In the last work, we emphasized that the rational design of molecular reactions between two additives (diamine and triacrylate) and perovskite components with the assistance of ZnO substrates can subsequently eliminate the negative effect introduced by additive, reduce the defect density and enhance the crystal orientation in the perovskite emissive layers. The rational understanding of interfacial interactions between perovskite, additives, and ZnO, enabled us to achieve PeLEDs with a device efficiency of 23.8% as well as an outstanding operational stability T70 (reduction to 70% of initial efficiency) lifetime of 290 hours at 20 mA/cm2.The study in this thesis developed effective interface-assisted modulation strategies for high-quality perovskites towards highly efficient and stable PeLEDs for commercialization. A thorough understanding of perovskite chemistry-property-performance modulation assisted by interfaces is indispensable for the future development of PeLEDs and our study took an important step.
  •  
8.
  • Lendel, Christofer, et al. (författare)
  • Protein nanofibrils and their use as building blocks of sustainable materials
  • 2021
  • Ingår i: RSC Advances. - : Royal Society of Chemistry (RSC). - 2046-2069. ; 11:62, s. 39188-39215
  • Forskningsöversikt (refereegranskat)abstract
    • The development towards a sustainable society requires a radical change of many of the materials we currently use. Besides the replacement of plastics, derived from petrochemical sources, with renewable alternatives, we will also need functional materials for applications in areas ranging from green energy and environmental remediation to smart foods. Proteins could, with their intriguing ability of self-assembly into various forms, play important roles in all these fields. To achieve that, the code for how to assemble hierarchically ordered structures similar to the protein materials found in nature must be cracked. During the last decade it has been demonstrated that amyloid-like protein nanofibrils (PNFs) could be a steppingstone for this task. PNFs are formed by self-assembly in water from a range of proteins, including plant resources and industrial side streams. The nanofibrils display distinct functional features and can be further assembled into larger structures. PNFs thus provide a framework for creating ordered, functional structures from the atomic level up to the macroscale. This review address how industrial scale protein resources could be transformed into PNFs and further assembled into materials with specific mechanical and functional properties. We describe what is required from a protein to form PNFs and how the structural properties at different length scales determine the material properties. We also discuss potential chemical routes to modify the properties of the fibrils and to assemble them into macroscopic structures.
  •  
9.
  • Liu, Lianlian, et al. (författare)
  • Bio Based Batteries
  • 2021
  • Ingår i: Advanced Energy Materials. - : WILEY-V C H VERLAG GMBH. - 1614-6832 .- 1614-6840. ; 11:43
  • Tidskriftsartikel (refereegranskat)abstract
    • The expanding use of electrical power generated from wind turbines and solar photovoltaic plants is enabled by the decreasing cost of electrical energy from sun and wind. With the advent of electrical energy from the intermittent solar and wind energy resources comes the requirement that electricity must be stored for use over time. The huge demand for materials for such storage systems will require a considerable energy input in extraction, processing and materials formulation, and new and sustainable electrochemical systems need to be developed. Storing electrical energy in bio based batteries is one of the options for handling the rapid expansion of renewable and variable electrical energy generated in wind turbines and in solar photovoltaic systems, from small to large. With projected needs for storage at 300 GWh for the coming decade, there are many niches for new technologies and possibilities. A supply line of materials for energy storage materials could be ultimately based on photosynthesis, in the form of materials derived from plants. Redox activity is possible in lignin, humic acid, and polyphenolic macromolecules, sometimes by electrochemical activation of redox groups.
  •  
10.
  • Liu, Lianlian, 1988-, et al. (författare)
  • Black Charcoal for Green and Scalable Wooden Electrodes for Supercapabatteries
  • 2022
  • Ingår i: Energy Technology. - : Wiley-VCH Verlag GMBH. - 2194-4288 .- 2194-4296. ; 10:3
  • Tidskriftsartikel (refereegranskat)abstract
    • A green, though black, sustainable and low-cost carbon material-charcoal produced from wood-is developed for electricity storage. Charcoal electrodes are fabricated by ball-milling charcoal and adding protein nanofibril binders. The charcoal electrode presents a capacitance of 360 F g(-1) and a conductivity of 0.2 S m(-1). A pair of redox peaks is observed in the cyclic voltammetry and assigned to originate from quinone groups. Compared with other wooden electrodes, these charcoal electrodes display better cycling stability with 88% capacity retention after 1000 cycles. Their discharge capacity is 2.5 times that of lignosulfonate/graphite hybrid electrodes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 29
Typ av publikation
tidskriftsartikel (19)
doktorsavhandling (8)
forskningsöversikt (1)
licentiatavhandling (1)
Typ av innehåll
refereegranskat (20)
övrigt vetenskapligt/konstnärligt (9)
Författare/redaktör
Solin, Niclas (17)
Wang, Lei (9)
Liu, Lianlian (5)
Inganäs, Olle (4)
Eklund, Per (3)
Xin, Binbin (3)
visa fler...
Inganäs, Olle, Profe ... (3)
Inganäs, Olle, 1951- (2)
Le Febvrier, Arnaud (2)
Paul, Biplab (2)
Eklund, Per, Associa ... (2)
Elsukova, Anna (2)
Gao, Feng, Professor ... (2)
Hanczyc, Piotr (2)
Lendel, Christofer (1)
Uvdal, Kajsa (1)
El Ghazaly, Ahmed (1)
Pedersen, Henrik (1)
Björk, Emma, 1981- (1)
Jafari, Mohammad Jav ... (1)
Ederth, Thomas (1)
Brandell, Daniel, Pr ... (1)
Nyberg, Tomas, Assoc ... (1)
Masich, Sergej (1)
Kuang, Chaoyang, 198 ... (1)
Gao, Feng, 1981- (1)
Martinez Gil, Jose G ... (1)
Mezzenga, Raffaele (1)
Zhang, Xin (1)
Hu, Zhang-Jun (1)
Lutz-Bueno, Viviane (1)
Diaz, Ana (1)
Rouf, Polla (1)
Bäcklund, Fredrik (1)
Fahlman, Mats, Profe ... (1)
Fernandez-Benito, Am ... (1)
Martinez-Lopez, Juan ... (1)
Garcia-Gimenez, Dani ... (1)
Carretero-Gonzalez, ... (1)
Porcheddu, Andrea (1)
Alfarano, Serena Ros ... (1)
Bolisetty, Sreenath (1)
Zhou, Jiangtao (1)
Peydayesh, Mohammad (1)
Goswami, Shrestha Ro ... (1)
Beerepoot, Maarten T ... (1)
Alam, Mohammad Mehbo ... (1)
Szymanska, Iwona (1)
Hu, Jiwen (1)
Gao, Hong-Wen (1)
visa färre...
Lärosäte
Linköpings universitet (29)
Kungliga Tekniska Högskolan (1)
Karolinska Institutet (1)
Språk
Engelska (29)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (21)
Teknik (8)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy