SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sommer C.) srt2:(2020-2024)"

Sökning: WFRF:(Sommer C.) > (2020-2024)

  • Resultat 1-10 av 42
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tabiri, S, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
2.
  • Bravo, L, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
3.
  • 2021
  • swepub:Mat__t
  •  
4.
  • Landén, Mikael, 1966, et al. (författare)
  • Brain aging in major depressive disorder: results from the ENIGMA major depressive disorder working group
  • 2021
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 26, s. 5124-5139
  • Tidskriftsartikel (refereegranskat)abstract
    • Major depressive disorder (MDD) is associated with an increased risk of brain atrophy, aging-related diseases, and mortality. We examined potential advanced brain aging in adult MDD patients, and whether this process is associated with clinical characteristics in a large multicenter international dataset. We performed a mega-analysis by pooling brain measures derived from T1-weighted MRI scans from 19 samples worldwide. Healthy brain aging was estimated by predicting chronological age (18–75 years) from 7 subcortical volumes, 34 cortical thickness and 34 surface area, lateral ventricles and total intracranial volume measures separately in 952 male and 1236 female controls from the ENIGMA MDD working group. The learned model coefficients were applied to 927 male controls and 986 depressed males, and 1199 female controls and 1689 depressed females to obtain independent unbiased brain-based age predictions. The difference between predicted “brain age” and chronological age was calculated to indicate brain-predicted age difference (brain-PAD). On average, MDD patients showed a higher brain-PAD of +1.08 (SE 0.22) years (Cohen’s d = 0.14, 95% CI: 0.08–0.20) compared with controls. However, this difference did not seem to be driven by specific clinical characteristics (recurrent status, remission status, antidepressant medication use, age of onset, or symptom severity). This highly powered collaborative effort showed subtle patterns of age-related structural brain abnormalities in MDD. Substantial within-group variance and overlap between groups were observed. Longitudinal studies of MDD and somatic health outcomes are needed to further assess the clinical value of these brain-PAD estimates. © 2020, The Author(s).
  •  
5.
  • Dima, Danai, et al. (författare)
  • Subcortical volumes across the lifespan : Data from 18,605 healthy individuals aged 3-90 years.
  • 2022
  • Ingår i: Human Brain Mapping. - : Wiley. - 1065-9471 .- 1097-0193. ; 43:1, s. 452-469
  • Tidskriftsartikel (refereegranskat)abstract
    • Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to examine age-related trajectories inferred from cross-sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3-90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter-individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age-related morphometric patterns.
  •  
6.
  • Frangou, Sophia, et al. (författare)
  • Cortical thickness across the lifespan : Data from 17,075 healthy individuals aged 3-90 years
  • 2022
  • Ingår i: Human Brain Mapping. - : John Wiley & Sons. - 1065-9471 .- 1097-0193. ; 43:1, s. 431-451
  • Tidskriftsartikel (refereegranskat)abstract
    • Delineating the association of age and cortical thickness in healthy individuals is critical given the association of cortical thickness with cognition and behavior. Previous research has shown that robust estimates of the association between age and brain morphometry require large-scale studies. In response, we used cross-sectional data from 17,075 individuals aged 3-90 years from the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to infer age-related changes in cortical thickness. We used fractional polynomial (FP) regression to quantify the association between age and cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma method. Interindividual variability was estimated using meta-analysis and one-way analysis of variance. For most regions, their highest cortical thickness value was observed in childhood. Age and cortical thickness showed a negative association; the slope was steeper up to the third decade of life and more gradual thereafter; notable exceptions to this general pattern were entorhinal, temporopolar, and anterior cingulate cortices. Interindividual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results may form the basis of further investigation on normative deviation in cortical thickness and its significance for behavioral and cognitive outcomes.
  •  
7.
  • Wierenga, Lara M., et al. (författare)
  • Greater male than female variability in regional brain structure across the lifespan
  • 2022
  • Ingår i: Human Brain Mapping. - : John Wiley & Sons. - 1065-9471 .- 1097-0193. ; 43:1, s. 470-499
  • Tidskriftsartikel (refereegranskat)abstract
    • For many traits, males show greater variability than females, with possible implications for understanding sex differences in health and disease. Here, the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) Consortium presents the largest-ever mega-analysis of sex differences in variability of brain structure, based on international data spanning nine decades of life. Subcortical volumes, cortical surface area and cortical thickness were assessed in MRI data of 16,683 healthy individuals 1-90 years old (47% females). We observed significant patterns of greater male than female between-subject variance for all subcortical volumetric measures, all cortical surface area measures, and 60% of cortical thickness measures. This pattern was stable across the lifespan for 50% of the subcortical structures, 70% of the regional area measures, and nearly all regions for thickness. Our findings that these sex differences are present in childhood implicate early life genetic or gene-environment interaction mechanisms. The findings highlight the importance of individual differences within the sexes, that may underpin sex-specific vulnerability to disorders.
  •  
8.
  • Gutierrez, C. P., et al. (författare)
  • DES16C3cje : A low-luminosity, long-lived supernova
  • 2020
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 496:1, s. 95-110
  • Tidskriftsartikel (refereegranskat)abstract
    • We present DES16C3cje, a low-luminosity, long-lived type II supernova (SN II) at redshift 0.0618, detected by the Dark Energy Survey (DES). DES16C3cje is a unique SN. The spectra are characterized by extremely narrow photospheric lines corresponding to very low expansion velocities of less than or similar to 1500 km s(-1), and the light curve shows an initial peak that fades after 50 d before slowly rebrightening over a further 100 d to reach an absolute brightness of M-r similar to 15.5 mag. The decline rate of the late-time light curve is then slower than that expected from the powering by radioactive decay of Co-56, but is comparable to that expected from accretion power. Comparing the bolometric light curve with hydrodynamical models, we find that DES16C3cje can be explained by either (i) a low explosion energy (0.11 foe) and relatively large Ni-56 production of 0.075 M-circle dot from an similar to 15 M-circle dot red supergiant progenitor typical of other SNe II, or (ii) a relatively compact similar to 40 M-circle dot star, explosion energy of 1 foe, and 0.08 M-circle dot of Ni-56. Both scenarios require additional energy input to explain the late-time light curve, which is consistent with fallback accretion at a rate of similar to 0.5 x 10(-)(8) M-circle dot s(-1).
  •  
9.
  • Solmi, M, et al. (författare)
  • 2022
  • Ingår i: Journal of affective disorders. - : Elsevier BV. - 1573-2517 .- 0165-0327. ; 299, s. 367-376
  • Tidskriftsartikel (refereegranskat)
  •  
10.
  • Smati, S., et al. (författare)
  • Integrative study of diet-induced mouse models of NAFLD identifies PPARα as a sexually dimorphic drug target
  • 2022
  • Ingår i: Gut. - : BMJ Publishing Group. - 0017-5749 .- 1468-3288. ; 71:4, s. 807-821
  • Tidskriftsartikel (refereegranskat)abstract
    • We evaluated the influence of sex on the pathophysiology of non-alcoholic fatty liver disease (NAFLD). We investigated diet-induced phenotypic responses to define sex-specific regulation between healthy liver and NAFLD to identify influential pathways in different preclinical murine models and their relevance in humans. Different models of diet-induced NAFLD (high-fat diet, choline-deficient high-fat diet, Western diet or Western diet supplemented with fructose and glucose in drinking water) were compared with a control diet in male and female mice. We performed metabolic phenotyping, including plasma biochemistry and liver histology, untargeted large-scale approaches (liver metabolome, lipidome and transcriptome), gene expression profiling and network analysis to identify sex-specific pathways in the mouse liver. The different diets induced sex-specific responses that illustrated an increased susceptibility to NAFLD in male mice. The most severe lipid accumulation and inflammation/fibrosis occurred in males receiving the high-fat diet and Western diet, respectively. Sex-biased hepatic gene signatures were identified for these different dietary challenges. The peroxisome proliferator-activated receptor α (PPARα) co-expression network was identified as sexually dimorphic, and in vivo experiments in mice demonstrated that hepatocyte PPARα determines a sex-specific response to fasting and treatment with pemafibrate, a selective PPARα agonist. Liver molecular signatures in humans also provided evidence of sexually dimorphic gene expression profiles and the sex-specific co-expression network for PPARα. These findings underscore the sex specificity of NAFLD pathophysiology in preclinical studies and identify PPARα as a pivotal, sexually dimorphic, pharmacological target. NCT02390232.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 42

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy