SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Soria Javier) srt2:(2020-2024)"

Sökning: WFRF:(Soria Javier) > (2020-2024)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cruz, Raquel, et al. (författare)
  • Novel genes and sex differences in COVID-19 severity
  • 2022
  • Ingår i: Human Molecular Genetics. - : Oxford University Press. - 0964-6906 .- 1460-2083. ; 31:22, s. 3789-3806
  • Tidskriftsartikel (refereegranskat)abstract
    • Here, we describe the results of a genome-wide study conducted in 11 939 coronavirus disease 2019 (COVID-19) positive cases with an extensive clinical information that were recruited from 34 hospitals across Spain (SCOURGE consortium). In sex-disaggregated genome-wide association studies for COVID-19 hospitalization, genome-wide significance (P < 5 × 10−8) was crossed for variants in 3p21.31 and 21q22.11 loci only among males (P = 1.3 × 10−22 and P = 8.1 × 10−12, respectively), and for variants in 9q21.32 near TLE1 only among females (P = 4.4 × 10−8). In a second phase, results were combined with an independent Spanish cohort (1598 COVID-19 cases and 1068 population controls), revealing in the overall analysis two novel risk loci in 9p13.3 and 19q13.12, with fine-mapping prioritized variants functionally associated with AQP3 (P = 2.7 × 10−8) and ARHGAP33 (P = 1.3 × 10−8), respectively. The meta-analysis of both phases with four European studies stratified by sex from the Host Genetics Initiative (HGI) confirmed the association of the 3p21.31 and 21q22.11 loci predominantly in males and replicated a recently reported variant in 11p13 (ELF5, P = 4.1 × 10−8). Six of the COVID-19 HGI discovered loci were replicated and an HGI-based genetic risk score predicted the severity strata in SCOURGE. We also found more SNP-heritability and larger heritability differences by age (<60 or ≥60 years) among males than among females. Parallel genome-wide screening of inbreeding depression in SCOURGE also showed an effect of homozygosity in COVID-19 hospitalization and severity and this effect was stronger among older males. In summary, new candidate genes for COVID-19 severity and evidence supporting genetic disparities among sexes are provided.
  •  
2.
  •  
3.
  • Barza, Sorina, Associate professor, 1967-, et al. (författare)
  • Optimal non-absolute domains for the Hardy operator minus identity
  • 2024
  • Ingår i: Journal of Mathematical Analysis and Applications. - : Elsevier. - 0022-247X .- 1096-0813. ; 538:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We characterize the optimal non-absolute domain for the Hardy operator minus the identity, in the Lebesgue space Lp(0,∞), 1≤p≤∞. We also address a similar question for the dual Hardy operator minus the identity.
  •  
4.
  • Martin-Torres, Javier, et al. (författare)
  • The HABIT (HabitAbility: Brine Irradiation and Temperature) environmental instrument for the ExoMars 2022 Surface Platform
  • 2020
  • Ingår i: Planetary and Space Science. - : Elsevier. - 0032-0633 .- 1873-5088. ; 190
  • Tidskriftsartikel (refereegranskat)abstract
    • The HABIT (HabitAbility: Brine Irradiation and Temperature) instrument is a European payload of the ExoMars 2022 Surface Platform Kazachok that will characterize the present-day habitability at its landing place in Oxia Planum, Mars. HABIT consists of two modules: (i) EnvPack (Environmental Package) that monitors the thermal environment (air and ground), the incident ultraviolet radiation, the near surface winds and the atmospheric dust cycle; and (ii) BOTTLE (Brine Observation Transition To Liquid Experiment), an In-situ Resource Utilization instrument to produce liquid water for future Mars exploration. BOTTLE will be used also to investigate the electrical conductivity properties of the martian atmosphere, the present-day atmospheric-ground water cycle and to evaluate if liquid water can exist on Mars in the form of brines, and for how long. These variables measured by HABIT are critical to determine the present and future habitability of the martian surface. In this paper, we describe in detail the HABIT instrument and sensors, together with the calibration of its Flight Model (FM) and the Engineering Qualification Model (EQM) versions. The EnvPack module has heritage from previous missions operating on the surface of Mars, and the environmental observations of its sensors will be directly comparable to those delivered by those missions. HABIT can provide information of the local temperature with ±0.2 °C accuracy, local winds with ±0.3 m/s, surface brightness temperature with ±0.8 °C, incident UV irradiance with 10% error of its absolute value in the UV-A, UV-B, UV-C ranges, as well as in the total UV-ABC range, and two additional wavebands, dedicated to ozone absorption. The UV observations can be used to derive the total opacity column and thus monitor the dust and ozone cycles. BOTTLE can demonstrate the hydration state of a set of four deliquescent salts, which have been found on Mars (calcium chloride, ferric sulphate, magnesium perchlorate and sodium perchlorate) by monitoring their electric conductivity (EC). The EC of the air and the dry salts under Earth ambient, clean room conditions is of the order of 0.1 μScm−1. We have simulated HABIT operations, within an environmental chamber, under martian conditions similar to those expected at Oxia Planum. For dry, CO2 atmospheric conditions at martian pressures, the air EC can be as low as 10−8 μScm−1, however it increases with the relative humidity (RH) percentage. The laboratory experiments show that after an increase from 0 to 60% RH within a few hours, the EC of the air increased up to 10−1 μScm−1, magnesium perchlorate hydrated and reached values of 10 μScm-1, whereas calcium chloride deliquesced forming a liquid state with EC of 102 μScm−1. HABIT will operate with a regular cadence, through day and night. The Electronic Unit (EU) is protected with a heater that is activated when its temperature is below −33 °C and disabled if the temperature of the surface platform rises above −30 °C. Additionally, the heaters of the BOTTLE unit can be activated to dehydrate the salts and reset the experiment. HABIT weighs only 918 g. Its power consumption depends on the operation mode and internal temperature, and it varies between 0.7 W, for nominal operation, and 13.1 W (when heaters are turned on at full intensity). HABIT has a baseline data rate of 1.5 MB/sol. In addition to providing critical environmental observations, this light and robust instrument, will be the first demonstrator of a water capturing system on the surface of Mars, and the first European In-Situ Resource Utilization in the surface of another planet.
  •  
5.
  • Nishi, Stephanie K., et al. (författare)
  • Mediterranean, DASH, and MIND Dietary Patterns and Cognitive Function : The 2-Year Longitudinal Changes in an Older Spanish Cohort
  • 2021
  • Ingår i: Frontiers in Aging Neuroscience. - : Frontiers Media SA. - 1663-4365. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Aims: Plant-forward dietary patterns have been associated with cardiometabolic health benefits, which, in turn, have been related to cognitive performance with inconsistent findings. The objective of this study was to examine the relationship between baseline adherence to three a priori dietary patterns (Mediterranean, DASH, and MIND diets) with 2-year changes in cognitive performance in older adults with overweight or obesity and high cardiovascular disease risk. Methods: A prospective cohort analysis was conducted within the PREDIMED-Plus trial, involving 6,647 men and women aged 55–75 years with overweight or obesity and metabolic syndrome. Using a validated, semiquantitative 143-item food frequency questionnaire completed at baseline, the dietary pattern adherence scores were calculated. An extensive neuropsychological test battery was administered at baseline and 2-year follow-up. Multivariable-adjusted linear regression models were used to assess associations between 2-year changes in cognitive function z-scores across tertiles of baseline adherence to the a priori dietary patterns. Results: Adherence to the Mediterranean diet at baseline was associated with 2-year changes in the general cognitive screening Mini-Mental State Examination (MMSE, β: 0.070; 95% CI: 0.014, 0.175, P-trend = 0.011), and two executive function-related assessments: the Trail Making Tests Part A (TMT-A, β: −0.054; 95% CI: −0.110, − 0.002, P-trend = 0.047) and Part B (TMT-B, β: −0.079; 95% CI: −0.134, −0.024, P-trend = 0.004). Adherence to the MIND diet was associated with the backward recall Digit Span Test assessment of working memory (DST-B, β: 0.058; 95% CI: 0.002, 0.114, P-trend = 0.045). However, higher adherence to the DASH dietary pattern was not associated with better cognitive function over a period of 2 years. Conclusion: In older Spanish individuals with overweight or obesity and at high cardiovascular disease risk, higher baseline adherence to the Mediterranean dietary pattern may be associated with better cognitive performance than lower adherence over a period of 2 years.
  •  
6.
  • Pandey, Siddharth, et al. (författare)
  • Ladakh: diverse, high-altitude extreme environments for off-earth analogue and astrobiology research
  • 2020
  • Ingår i: International Journal of Astrobiology. - : Cambridge University Press. - 1473-5504 .- 1475-3006. ; 19:1, s. 78-98
  • Forskningsöversikt (refereegranskat)abstract
    • This paper highlights unique sites in Ladakh, India, investigated during our 2016 multidisciplinary pathfinding expedition to the region. We summarize our scientific findings and the site's potential to support science exploration, testing of new technologies and science protocols within the framework of astrobiology research. Ladakh has several accessible, diverse, pristine and extreme environments at very high altitudes (3000–5700 m above sea level). These sites include glacial passes, sand dunes, hot springs and saline lake shorelines with periglacial features. We report geological observations and environmental characteristics (of astrobiological significance) along with the development of regolith-landform maps for cold high passes. The effects of the diurnal water cycle on salt deliquescence were studied using the ExoMars Mission instrument mockup: HabitAbility: Brines, Irradiance and Temperature (HABIT). It recorded the existence of an interaction between the diurnal water cycle in the atmosphere and salts in the soil (which can serve as habitable liquid water reservoirs). Life detection assays were also tested to establish the best protocols for biomass measurements in brines, periglacial ice-mud and permafrost melt water environments in the Tso-Kar region. This campaign helped confirm the relevance of clays and brines as interest targets of research on Mars for biomarker preservation and life detection.
  •  
7.
  • Soria-Salinas, Álvaro, et al. (författare)
  • Development of a wind retrieval method for low-speed low-pressure flows for ExoMars
  • 2020
  • Ingår i: Applied Thermal Engineering. - : Elsevier. - 1359-4311 .- 1873-5606. ; 180
  • Tidskriftsartikel (refereegranskat)abstract
    • Forced convective heat transfer from three horizontally inclined rectangular-based cylinders (rods) has been studied experimentally under representative Martian near-surface air flows in the Aarhus Wind Tunnel Simulator (AWTS), Denmark. The testing campaign was developed for the HABIT (Habitability: Brines, Irradiation and Temperature) instrument, European payload on board the ExoMars 2022 Kazachok surface platform. The average heat transfer coefficient was determined from steady CO2 flows at a pressure of 9.9 mbar, an ambient temperature of ∼25 °C, and for horizontal free-stream velocities between 0.8 and 12 m/s. A retrieval algorithm to derive the wind speed from the average heat transfer coefficient estimated at each of the three HABIT Air Temperature Sensors (ATS) rods was calibrated within the AWTS. The ATS rods are placed one at the front of the instrument structure (ATS2) and two on the sides (ATS1 and ATS3); and under Martian atmospheric conditions these rods serve as cooling fins. Several relationships between the Nusselt number and the Reynolds and Prandtl numbers reported in the literature were evaluated to model convective heat transfer from the ATS rods. Where needed, corrections to account for radiative heat transfer within the AWTS were implemented. The final retrieval method demonstrated that wind speed can be retrieved for frontal winds in the range of 0–10 m/s, with an error of ±0.3 m/s, using the cooling profile of the ATS rod 3, and for lateral winds in the range of 0–6 m/s, with an error of ±0.3 m/s, using the ATS rod 2 cooling profile.
  •  
8.
  • Soria-Salinas, Álvaro (författare)
  • Development of the Wind and Air Temperature Sensor of the ExoMars 2022 HABIT Instrument
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This work presents the development, validation and calibration of the air temperature sensors (ATS) and the air and wind retrieval method of the HABIT (HabitAbility: Brines, Irradiation and Temperature) instrument. HABIT is one of the two European  payloads of the ESA/Roscosmos ExoMars 2022 mission that will land at Oxia Planum (18.20° N, 335.45° E), on Mars.One of the main novelties of this Ph.D. thesis is to use the thin fins that work as ATS on HABIT as a wind sensor for the planetary boundary layer of Mars. The thesis is based on the study and modelling of heat transfer along three rods when exposed to forced convection in a gaseous fluid, and that is tested: (1) through computational fluid dynamic simulations, which provided inputs to the early design of the HABIT structure; (2) under laboratory conditions, with the use of a specifically designed prototype and a cooling fan; and (3) within a subsonic wind tunnel facility under terrestrial conditions.A preliminary validation of the wind speed retrieval approach is first performed using temperature measurements from Mars provided by the Rover Environmental Monitoring Station (REMS) instrument, on board the NASA Curiosity rover of the Mars Science Laboratory (MSL) mission. The method is based on modelling forced convection of the ATS of REMS when assumed as thin rods immersed in the extreme low-pressure and high-radiating atmospheric conditions of the Martian thermal boundary layer, at a height of ∼ 1.5 m from the surface. Assuming the previously reported REMS wind sensor (WS) retrieval errors of 20% for the wind speed, ±30° for the horizontal “front” wind directions, and ±45° for the horizontal “rear” wind directions, agreement with the WS values of up to 77% of the acquisition time, on average, for wind speeds and coincidence between 60% and 80% of the time for wind directions is reported for some sols. These promising results are limited to only evening extended acquisitions from 18:00 to 21:00 local mean solar time (LMST) and orientations within the validity region of the retrieval. That is, the method was only considered valid over a narrow angle range of 13° to 107° in azimuth angle. In addition to this, the results of this first study suggested a new optimal orientation when using the ATS for wind speed and direction retrievals of +60° clockwise with respect to the forward direction of the Curiosity rover.The wind retrieval model is also validated and calibrated with the HABIT engineering and qualification model (EQM) in the Aarhus Wind Tunnel Simulator (AWTS) of the Aarhus University, Denmark. The AWTS is designed to reproduce typical winds on the surface of Mars. The data acquired during the wind tunnel campaign were used to validate the forced convective and radiative heat transfer model for each of the three ATS. The campaign investigated winds in steady CO2 flows at a pressure of 9.9 mbar, an ambient temperature of 25°C, and for horizontal free-stream velocities between 0.8 and 12 m/s. Several relationships between the Nusselt number and the Reynolds and Prandtl numbers reported in the literature were evaluated in the tunnel to model forced convection through the ATS rods. Where needed, corrections to account for radiative heat transfer within the AWTS were implemented to correct for experimental artefacts. The tests demonstrated that this retrieval method can be used to derive wind speed for frontal winds on Mars in the range of 0 to 10 m/s, with an error of ±0.3 m/s, using the cooling profile of the ATS rod 3, and for lateral winds in the range of 0 to 6 m/s, with an error of ±0.3 m/s, using the ATS rod 2 cooling profile.The thesis also includes the calibration of the HABIT ATS flight model (FM) in the clean room of Omnisys Instruments AB, and the retrieval model that will be used in operations during the ExoMars 2022 mission and for archiving in the Planetary Science Archive (PSA) of the European Space Agency (ESA).Finally, the wind retrieval method developed in this thesis can be applied not only to the future analysis of HABIT data at Oxia Planum, but also to re-analyse the ATS data of REMS at Gale crater, and for future comparative analysis with the HABIT/ExoMars 2022, the Temperature and Wind Sensors for InSight (TWINS)/InSight, and the Mars Environmental Dynamics Analyzer (MEDA)/Mars 2020 rover instruments.
  •  
9.
  • Soria-Salinas, Álvaro, et al. (författare)
  • Wind retrieval from temperature measurements from the Rover Environmental Monitoring Station/Mars Science Laboratory
  • 2020
  • Ingår i: Icarus. - : Elsevier. - 0019-1035 .- 1090-2643. ; 346
  • Tidskriftsartikel (refereegranskat)abstract
    • This work presents a novel method for the real-time retrieval of wind speed on the surface of Mars that uses temperature measurements from the Rover Environmental Monitoring Station (REMS) instrument onboard the Curiosity rover of the Mars Science Laboratory (MSL) mission. After final failure of the Wind Sensor (WS) in sol 1491, REMS has not been providing wind data. The new wind retrieval approach that we propose may eventually be able to supply MSL with wind values for contextualizing the roverâôs operations and for meteorological studies on the surface of Mars. The new method is based on forced convection modeling of the Air Temperature Sensors (ATS) of REMS as thin rods immersed in the extreme low-pressure and high-radiating atmospheric conditions of the Martian thermal boundary layer at a height of ∼" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.2px; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">∼ 1.5 m from the surface. A preliminary validation of the possibilities and limitations of this retrieval has been performed using comparative analysis with existing REMS wind field-site data for the same sols that are available at the Planetary Data System (PDS). We have developed both a ”coarse” approach, in which wind speed is determined with no regard to wind direction, and a ”refined” method, in which it is attempted to determine both wind speed and direction. Assuming the previously reported WS retrieval errors of 20% for the wind speed, we report an agreement to the WS values of wind speed ranging from 36.4% to 77% of the acquisition time for the ”coarse” approach, depending on the sol examined. These promising results are limited to only evening extended acquisitions from 18:00 to 21:00 local mean solar time (LMST). This method could be applied to daytime conditions. The results suggest a new optimal orientation for wind speed retrieval of 60°clockwise with respect to the forward direction of the Curiosity rover, although the technique is not yet ready to be considered for planning of the Curiosity rover operations. This method could extend the wind characterization of the Gale Crater for future Curiosity rover data acquisitions by recycling air temperature measurements and provide the scientific community with a data set for future comparative analysis with the Temperature and Wind Sensors for InSight (TWINS)/InSight, the HabitAbility: Brines, Irradiation and Temperature (HABIT)/ExoMars 2020, and the Mars Environmental Dynamics Analyzer (MEDA)/Mars 2020 rover instruments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9
Typ av publikation
tidskriftsartikel (6)
doktorsavhandling (1)
forskningsöversikt (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (7)
övrigt vetenskapligt/konstnärligt (1)
populärvet., debatt m.m. (1)
Författare/redaktör
Martin-Torres, Javie ... (5)
Zorzano, Maria Paz (4)
Soria, Javier (2)
Boada, Mercè (1)
Alarcón-Riquelme, Ma ... (1)
Karlsen, Tom H (1)
visa fler...
Gago Dominguez, Manu ... (1)
Ayuso, Carmen (1)
Castelao, Jose E. (1)
Gonzalez-Neira, Anna (1)
Pita, Guillermo (1)
Frithiof, Robert (1)
Ganna, Andrea (1)
Guillén-Navarro, Enc ... (1)
Romaguera, Dora (1)
Carracedo, Angel (1)
Tinahones, Francisco ... (1)
Herrero, Maria José (1)
Schulte, Eva C (1)
Fernandez-Cadenas, I ... (1)
Prati, Daniele (1)
Valenti, Luca (1)
Arango, Celso (1)
García, Federico (1)
Martin, Vicente (1)
Romero-Gomez, Manuel (1)
Torregrosa Hetland, ... (1)
Razquin, Cristina (1)
Almoguera, Berta (1)
Asselta, Rosanna (1)
Duga, Stefano (1)
Salas-Salvado, Jordi (1)
Zorzano Mier, María- ... (1)
Real, Luis Miguel (1)
Rodríguez-Artalejo, ... (1)
Barza, Sorina, Assoc ... (1)
Demissie, Bizuneh Mi ... (1)
Franke, Andre (1)
de Rojas, Itziar (1)
Sánchez-Juan, Pascua ... (1)
Vaishampayan, Parag (1)
Pereira, Alexandre C ... (1)
Vioque, Jesus (1)
Ramírez Luque, Juan ... (1)
Bujanda, Luis (1)
Brugada, Ramon (1)
Zeberg, Hugo (1)
Nakanishi, Tomoko (1)
Bernardo, David (1)
Butler-Laporte, Guil ... (1)
visa färre...
Lärosäte
Luleå tekniska universitet (5)
Lunds universitet (2)
Uppsala universitet (1)
Karlstads universitet (1)
Karolinska Institutet (1)
Språk
Engelska (8)
Spanska (1)
Forskningsämne (UKÄ/SCB)
Teknik (5)
Medicin och hälsovetenskap (2)
Naturvetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy