SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Spegel P.) srt2:(2015-2019)"

Sökning: WFRF:(Spegel P.) > (2015-2019)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahlqvist, E., et al. (författare)
  • Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables
  • 2018
  • Ingår i: Lancet Diabetes & Endocrinology. - : Elsevier BV. - 2213-8587. ; 6:5, s. 361-369
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Diabetes is presently classified into two main forms, type 1 and type 2 diabetes, but type 2 diabetes in particular is highly heterogeneous. A refined classification could provide a powerful tool to individualise treatment regimens and identify individuals with increased risk of complications at diagnosis. Methods We did data-driven cluster analysis (k-means and hierarchical clustering) in patients with newly diagnosed diabetes (n=8980) from the Swedish All New Diabetics in Scania cohort. Clusters were based on six variables (glutamate decarboxylase antibodies, age at diagnosis, BMI, HbA(1c), and homoeostatic model assessment 2 estimates of beta-cell function and insulin resistance), and were related to prospective data from patient records on development of complications and prescription of medication. Replication was done in three independent cohorts: the Scania Diabetes Registry (n=1466), All New Diabetics in Uppsala (n=844), and Diabetes Registry Vaasa (n=3485). Cox regression and logistic regression were used to compare time to medication, time to reaching the treatment goal, and risk of diabetic complications and genetic associations. Findings We identified five replicable clusters of patients with diabetes, which had significantly different patient characteristics and risk of diabetic complications. In particular, individuals in cluster 3 (most resistant to insulin) had significantly higher risk of diabetic kidney disease than individuals in clusters 4 and 5, but had been prescribed similar diabetes treatment. Cluster 2 (insulin deficient) had the highest risk of retinopathy. In support of the clustering, genetic associations in the clusters differed from those seen in traditional type 2 diabetes. Interpretation We stratified patients into five subgroups with differing disease progression and risk of diabetic complications. This new substratification might eventually help to tailor and target early treatment to patients who would benefit most, thereby representing a first step towards precision medicine in diabetes.
  •  
2.
  •  
3.
  • Adam, J., et al. (författare)
  • Fumarate Hydratase Deletion in Pancreatic beta Cells Leads to Progressive Diabetes
  • 2017
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 20:13, s. 3135-3148
  • Tidskriftsartikel (refereegranskat)abstract
    • We explored the role of the Krebs cycle enzyme fumarate hydratase (FH) in glucose-stimulated insulin secretion (GSIS). Mice lacking Fh1 in pancreatic beta cells (Fh1 beta KO mice) appear normal for 6-8 weeks but then develop progressive glucose intolerance and diabetes. Glucose tolerance is rescued by expression of mitochondrial or cytosolic FH but not by deletion of Hif1 alpha or Nrf2. Progressive hyperglycemia in Fh1bKO mice led to dysregulated metabolism in b cells, a decrease in glucose-induced ATP production, electrical activity, cytoplasmic [Ca2+](i) elevation, and GSIS. Fh1 loss resulted in elevated intracellular fumarate, promoting succination of critical cysteines in GAPDH, GMPR, and PARK 7/DJ-1 and cytoplasmic acidification. Intracellular fumarate levels were increased in islets exposed to high glucose and in islets from human donors with type 2 diabetes (T2D). The impaired GSIS in islets from diabetic Fh1bKO mice was ameliorated after culture under normoglycemic conditions. These studies highlight the role of FH and dysregulated mitochondrial metabolism in T2D.
  •  
4.
  • Axelsson, Annika, et al. (författare)
  • Sox5 regulates beta-cell phenotype and is reduced in type 2 diabetes
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 2 diabetes (T2D) is characterized by insulin resistance and impaired insulin secretion, but the mechanisms underlying insulin secretion failure are not completely understood. Here, we show that a set of co-expressed genes, which is enriched for genes with islet-selective open chromatin, is associated with T2D. These genes are perturbed in T2D and have a similar expression pattern to that of dedifferentiated islets. We identify Sox5 as a regulator of the module. Sox5 knockdown induces gene expression changes similar to those observed in T2D and diabetic animals and has profound effects on insulin secretion, including reduced depolarization-evoked Ca 2+-influx and β-cell exocytosis. SOX5 overexpression reverses the expression perturbations observed in a mouse model of T2D, increases the expression of key β-cell genes and improves glucose-stimulated insulin secretion in human islets from donors with T2D. We suggest that human islets in T2D display changes reminiscent of dedifferentiation and highlight SOX5 as a regulator of β-cell phenotype and function.
  •  
5.
  • Geidenstam, N., et al. (författare)
  • Metabolite profiling of obese individuals before and after a one year weight loss program
  • 2017
  • Ingår i: International Journal of Obesity. - : Springer Science and Business Media LLC. - 0307-0565 .- 1476-5497. ; 41:9, s. 1369-1378
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective:We and others have previously characterized changes in circulating metabolite levels following diet-induced weight loss. Our aim was to investigate whether baseline metabolite levels and weight-loss-induced changes in these are predictive of or associated with changes in body mass index (BMI) and metabolic risk traits.Methods:Serum metabolites were analyzed with gas and liquid chromatography/mass spectrometry in 91 obese individuals at baseline and after participating in a 1 year non-surgical weight loss program.ResultsA total of 137 metabolites were identified and semi-quantified at baseline (BMI 42.7±5.8, mean±s.d.) and at follow-up (BMI 36.3±6.6). Weight-loss-induced modification was observed for levels of 57 metabolites in individuals with â
  •  
6.
  • Safai, N., et al. (författare)
  • Effect of metformin on plasma metabolite profile in the Copenhagen Insulin and Metformin Therapy (CIMT) trial
  • 2018
  • Ingår i: Diabetic Medicine. - : Wiley. - 0742-3071. ; 35:7, s. 944-953
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: Metformin is the first-line treatment for Type 2 diabetes. However, not all people benefit from this drug. Our aim was to investigate the effects of metformin on the plasma metabolome and whether the pretreatment metabolite profile can predict HbA1c outcome. Methods: Post hoc analysis of the Copenhagen Insulin and Metformin Therapy (CIMT) trial, a multicentre study from May 2008 to December 2012, was carried out. We used a non-target method to analyse 87 plasma metabolites in participants with Type 2 diabetes (n = 370) who were randomized in a 1: 1 ratio to 18 months of metformin or placebo treatment. Metabolites were measured by liquid chromatography-mass spectrometry at baseline and at 18-month follow-up and the data were analysed using a linear mixed-effect model. Results: At baseline, participants who were on metformin before the trial (n = 312) had higher levels of leucine/isoleucine and five lysophosphatidylethanolamines (LPEs), and lower levels of carnitine and valine compared with metformin-naïve participants (n = 58). At follow-up, participants randomized to metformin (n = 188) had elevated levels of leucine/isoleucine and reduced carnitine, tyrosine and valine compared with placebo (n = 182). At baseline, participants on metformin treatment with the highest levels of carnitine C10:1 and leucine/isoleucine had the lowest HbA1c (P-interaction = 0.02 and 0.03, respectively). This association was not significant with HbA1c at follow-up. Conclusions: Metformin treatment is associated with decreased levels of valine, tyrosine and carnitine, and increased levels of leucine/isoleucine. None of the identified metabolites can predict the HbA1c-lowering effect of metformin. Further studies of the association between metformin, carnitine and leucine/isoleucine are warranted.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy