SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Spinoglio L.) srt2:(2010-2014)"

Sökning: WFRF:(Spinoglio L.) > (2010-2014)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Motte, F., et al. (författare)
  • Initial highlights of the HOBYS key program, the Herschel imaging survey of OB young stellar objects
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L77-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the initial highlights of the HOBYS key program, which are based on Herschel images of the Rosette molecular complex and maps of the RCW120 H II region. Using both SPIRE at 250/350/500 mu m and PACS at 70/160 mu m or 100/160 mu m, the HOBYS survey provides an unbiased and complete census of intermediate-to high-mass young stellar objects, some of which are not detected by Spitzer. Key core properties, such as bolometric luminosity and mass (as derived from spectral energy distributions), are used to constrain their evolutionary stages. We identify a handful of high-mass prestellar cores and show that their lifetimes could be shorter in the Rosette molecular complex than in nearby low-mass star-forming regions. We also quantify the impact of expanding H II regions on the star formation process acting in both Rosette and RCW 120.
  •  
2.
  • Mattsson, Lars, et al. (författare)
  • The Herschel exploitation of local galaxy Andromeda (HELGA) - V. Strengthening the case for substantial interstellar grain growth
  • 2014
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 444:1, s. 797-807
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, we consider the implications of the distributions of dust and metals in the disc of M31. We derive mean radial dust distributions using a dust map created from Herschel images of M31 sampling the entire far-infrared peak. Modified blackbodies are fit to approximately 4000 pixels with a varying, as well as a fixed, dust emissivity index (beta). An overall metal distribution is also derived using data collected from the literature. We use a simple analytical model of the evolution of the dust in a galaxy with dust contributed by stellar sources and interstellar grain growth, and fit this model to the radial dust-to-metals distribution across the galaxy. Our analysis shows that the dust-to-gas gradient in M31 is steeper than the metallicity gradient, suggesting interstellar dust growth is (or has been) important in M31. We argue that M31 helps build a case for cosmic dust in galaxies being the result of substantial interstellar grain growth, while the net dust production from stars may be limited. We note, however, that the efficiency of dust production in stars, e.g. in supernovae ejecta and/or stellar atmospheres, and grain destruction in the interstellar medium may be degenerate in our simple model. We can conclude that interstellar grain growth by accretion is likely at least as important as stellar dust production channels in building the cosmic dust component in M31.
  •  
3.
  • Meijerink, R., et al. (författare)
  • Evidence for CO Shock Excitation in NGC 6240 from Herschel SPIRE Spectroscopy
  • 2013
  • Ingår i: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 762:2, s. L16-L20
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Herschel SPIRE FTS spectroscopy of the nearby luminous infrared galaxy NGC 6240. In total 20 linesare detected, including CO J = 4−3 through J = 13−12, 6 H2O rotational lines, and [C i] and [N ii] fine-structurelines. The CO to continuum luminosity ratio is 10 times higher in NGC 6240 than Mrk 231. Although the COladdersof NGC 6240 and Mrk 231 are very similar, UV and/or X-ray irradiation are unlikely to be responsible for theexcitation of the gas in NGC 6240.We applied both C and J shock models to the H2 v = 1–0 S(1) and v = 2–1 S(1)lines and the CO rotational ladder. The CO ladder is best reproduced by amodel with shock velocity vs = 10 km s−1and a pre-shock density nH = 5 × 104 cm−3. We find that the solution best fitting the H2 lines is degenerate. The shock velocities and number densities range between vs = 17–47 km s−1 and nH = 107–5×104 cm−3, respectively.The H2 lines thus need a much more powerful shock than the CO lines.We deduce that most of the gas is currently moderately stirred up by slow (10 km s−1) shocks while only a small fraction (1%) of the interstellar mediumis exposed to the high-velocity shocks. This implies that the gas is rapidly losing its highly turbulent motions. We argue that a high CO line-to-continuum ratio is a key diagnostic for the presence of shocks.
  •  
4.
  • Men'shchikov, A., et al. (författare)
  • Filamentary structures and compact objects in the Aquila and Polaris clouds observed by Herschel
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L103-
  • Tidskriftsartikel (refereegranskat)abstract
    • Our PACS and SPIRE images of the Aquila Rift and part of the Polaris Flare regions, taken during the science demonstration phase of Herschel discovered fascinating, omnipresent filamentary structures that appear to be physically related to compact cores. We briefly describe a new multi-scale, multi-wavelength source extraction method used to detect objects and measure their parameters in our Herschel images. All of the extracted starless cores (541 in Aquila and 302 in Polaris) appear to form in the long and very narrow filaments. With its combination of the far-IR resolution and sensitivity, Herschel directly reveals the filaments in which the dense cores are embedded; the filaments are resolved and have deconvolved widths of similar to 35 '' in Aquila and similar to 59 '' in Polaris (similar to 9000 AU in both regions). Our first results of observations with Herschel enable us to suggest that in general dense cores may originate in a process of fragmentation of complex networks of long, thin filaments, likely formed as a result of an interplay between gravity, interstellar turbulence, and magnetic fields. To unravel the roles of the processes, one has to obtain additional kinematic and polarization information; these follow-up observations are planned.
  •  
5.
  • Ward-Thompson, D., et al. (författare)
  • A Herschel study of the properties of starless cores in the Polaris Flare dark cloud region using PACS and SPIRE
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L92-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Polaris Flare cloud region contains a great deal of extended emission. It is at high declination and high Galactic latitude. It was previously seen strongly in IRAS Cirrus emission at 100 microns. We have detected it with both PACS and SPIRE on Herschel. We see filamentary and low-level structure. We identify the five densest cores within this structure. We present the results of a temperature, mass and density analysis of these cores. We compare their observed masses to their virial masses, and see that in all cases the observed masses lie close to the lower end of the range of estimated virial masses. Therefore, we cannot say whether they are gravitationally bound prestellar cores. Nevertheless, these are the best candidates to be potential prestellar cores in the Polaris cloud region.
  •  
6.
  • Gonzalez-Alfonso, E., et al. (författare)
  • Herschel observations of water vapour in Markarian 231
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:Article Number: L43
  • Tidskriftsartikel (refereegranskat)abstract
    • The Ultra luminous infrared galaxy (ULIRG) Mrk 231 reveals up to seven rotational lines of water (H2O) in emission, including a very high-lying (Eupper = 640 K) line detected at a 4 sigma level, within the Herschel/SPIRE wavelength range (190
  •  
7.
  • Hennemann, M., et al. (författare)
  • Herschel observations of embedded protostellar clusters in the Rosette molecular cloud
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L84-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Herschel OB young stellar objects survey (HOBYS) has observed the Rosette molecular cloud, providing an unprecedented view of its star formation activity. These new far-infrared data reveal a population of compact young stellar objects whose physical properties we aim to characterise. We compiled a sample of protostars and their spectral energy distributions that covers the near-infrared to submillimetre wavelength range. These were used to constrain key properties in the protostellar evolution, bolometric luminosity, and envelope mass and to build an evolutionary diagram. Several clusters are distinguished including the cloud centre, the embedded clusters in the vicinity of luminous infrared sources, and the interaction region. The analysed protostellar population in Rosette ranges from 0.1 to about 15 M-circle dot with luminosities between 1 and 150 L-circle dot, which extends the evolutionary diagram from low-mass protostars into the high-mass regime. Some sources lack counterparts at near-to mid-infrared wavelengths, indicating extreme youth. The central cluster and the Phelps & Lada 7 cluster appear less evolved than the remainder of the analysed protostellar population. For the central cluster, we find indications that about 25% of the protostars classified as Class I from near-to mid-infrared data are actually candidate Class 0 objects. As a showcase for protostellar evolution, we analysed four protostars of low-to intermediate-mass in a single dense core, and they represent different evolutionary stages from Class 0 to Class I. Their mid-to far-infrared spectral slopes flatten towards the Class I stage, and the 160 to 70 mu m flux ratio is greatest for the presumed Class 0 source. This shows that the Herschel observations characterise the earliest stages of protostellar evolution in detail.
  •  
8.
  • Schneider, N., et al. (författare)
  • The Herschel view of star formation in the Rosette molecular cloud under the influence of NGC 2244
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L83-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Rosette molecular cloud is promoted as the archetype of a triggered star-formation site. This is mainly due to its morphology, because the central OB cluster NGC 2244 has blown a circular-shaped cavity into the cloud and the expanding H II-region now interacts with the cloud. Aims. Studying the spatial distribution of the different evolutionary states of all star-forming sites in Rosette and investigating possible gradients of the dust temperature will help to test the "triggered star-formation" scenario in Rosette. Methods. We use continuum data obtained with the PACS (70 and 160 mu m) and SPIRE instruments (250, 350, 500 mu m) of the Herschel telescope during the science demonstration phase of HOBYS. Results. Three-color images of Rosette impressively show how the molecular gas is heated by the radiative impact of the NGC 2244 cluster. A clear negative temperature gradient and a positive density gradient (running from the H II-region/molecular cloud interface into the cloud) are detected. Studying the spatial distribution of the most massive dense cores (size scale 0.05 to 0.3 pc), we find an age-sequence (from more evolved to younger) with increasing distance to the cluster NGC 2244. No clear gradient is found for the clump (size-scale up to 1 pc) distribution. Conclusions. The existence of temperature and density gradients and the observed age-sequence imply that star formation in Rosette may indeed be influenced by the radiative impact of the central NGC 2244 cluster. A more complete overview of the prestellar and protostellar population in Rosette is required to obtain a firmer result.
  •  
9.
  • van der Werf, P.P., et al. (författare)
  • Black hole accretion and star formation as drivers of gas excitation and chemistry in Markarian 231
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:Article Number: L42
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a full high resolution SPIRE FTS spectrum of the nearby ultraluminous infrared galaxy Mrk 231. In total 25 lines are detected, including CO J = 5-4 through J = 13-12, 7 rotational lines of H2O, 3 of OH+ and one line each of H2O+, CH+, and HF. We find that the excitation of the CO rotational levels up to J = 8 can be accounted for by UV radiation from star formation. However, the approximately flat luminosity distribution of the CO lines over the rotational ladder above J = 8 requires the presence of a separate source of excitation for the highest CO lines. We explore X-ray heating by the accreting supermassive black hole in Mrk 231 as a source of excitation for these lines, and find that it can reproduce the observed luminosities. We also consider a model with dense gas in a strong UV radiation field to produce the highest CO lines, but find that this model strongly overpredicts the hot dust mass in Mrk 231. Our favoured model consists of a star forming disk of radius 560 pc, containing clumps of dense gas exposed to strong UV radiation, dominating the emission of CO lines up to J = 8. X-rays from the accreting supermassive black hole in Mrk 231 dominate the excitation and chemistry of the inner disk out to a radius of 160 pc, consistent with the X-ray power of the AGN in Mrk 231. The extraordinary luminosity of the OH+ and H2O+ lines reveals the signature of X-ray driven excitation and chemistry in this region.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy