SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Spolyar Douglas) srt2:(2016)"

Sökning: WFRF:(Spolyar Douglas) > (2016)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bull, Philip, et al. (författare)
  • Beyond ΛCDM : Problems, solutions, and the road ahead
  • 2016
  • Ingår i: Physics of the Dark Universe. - : Elsevier BV. - 2212-6864. ; 12, s. 56-99
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite its continued observational successes, there is a persistent (and growing) interest in extending cosmology beyond the standard model, Lambda CDM. This is motivated by a range of apparently serious theoretical issues, involving such questions as the cosmological constant problem, the particle nature of dark matter, the validity of general relativity on large scales, the existence of anomalies in the CMB and on small scales, and the predictivity and testability of the inflationary paradigm. In this paper, we summarize the current status of Lambda CDM as a physical theory, and review investigations into possible alternatives along a number of different lines, with a particular focus on highlighting the most promising directions. While the fundamental problems are proving reluctant to yield, the study of alternative cosmologies has led to considerable progress, with much more to come if hopes about forthcoming high-precision observations and new theoretical ideas are fulfilled.
  •  
2.
  • Freese, Katherine, et al. (författare)
  • Dark stars : a review
  • 2016
  • Ingår i: Reports on progress in physics (Print). - : Institute of Physics Publishing (IOPP). - 0034-4885 .- 1361-6633. ; 79:6
  • Forskningsöversikt (refereegranskat)abstract
    • Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only <= 0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (similar to 10 AU) and cool (surface temperatures similar to 10 000 K) objects. We follow the evolution of dark stars from their inception at similar to 1M(circle dot) as they accrete mass from their surroundings to become supermassive stars, some even reaching masses >10(6)M(circle dot) and luminosities >10(10)L(circle dot), making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.
  •  
3.
  • López, A., et al. (författare)
  • Fermi/LAT observations of dwarf galaxies highly constrain a dark matter interpretation of excess positrons seen in AMS-02, HEAT, and PAMELA
  • 2016
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : Institute of Physics Publishing (IOPP). - 1475-7516. ; 2016:3
  • Tidskriftsartikel (refereegranskat)abstract
    • It is shown that a Weakly Interacting Massive dark matter Particle (WIMP) interpretation for the positron excess observed in a variety of experiments, HEAT, PAMELA, and AMS-02, is highly constrained by the Fermi/LAT observations of dwarf galaxies. In particular, this paper examines the annihilation channels that best fit the current AMS-02 data (Boudaud et al., 2014), specifically focusing on channels and parameter space not previously explored by the Fermi/LAT collaboration. The Fermi satellite has surveyed the γ-ray sky, and its observations of dwarf satellites are used to place strong bounds on the annihilation of WIMPs into a variety of channels. For the single channel case, we find that dark matter annihilation into {b,e+e-, μ+μ-, τ+τ-,4-e or 4-τ } is ruled out as an explanation of the AMS positron excess (here b quarks are a proxy for all quarks, gauge and Higgs bosons). In addition, we find that the Fermi/LAT 2σ upper limits, assuming the best-fit AMS-02 branching ratios, exclude multichannel combinations into b and leptons. The tension between the results might relax if the branching ratios are allowed to deviate from their best-fit values, though a substantial change would be required. Of all the channels we considered, the only viable channel that survives the Fermi/LAT constraint and produces a good fit to the AMS-02 data is annihilation (via a mediator) to 4-μ, or mainly to 4-μ in the case of multichannel combinations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy