SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Srinivas Vivek) srt2:(2022)"

Sökning: WFRF:(Srinivas Vivek) > (2022)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Banerjee, Rahul, et al. (författare)
  • Ferritin-Like Proteins : A Conserved Core for a Myriad of Enzyme Complexes
  • 2022
  • Ingår i: Macromolecular Protein Complexes IV. - Cham : Springer. - 9783031007927 - 9783031007934 ; , s. 109-153
  • Bokkapitel (refereegranskat)abstract
    • Ferritin-like proteins share a common fold, a four α-helix bundle core, often coordinating a pair of metal ions. Although conserved, the ferritin fold permits a diverse set of reactions, and is central in a multitude of macromolecular enzyme complexes. Here, we emphasize this diversity through three members of the ferritin-like superfamily: the soluble methane monooxygenase, the class I ribonucleotide reductase and the aldehyde deformylating oxygenase. They all rely on dinuclear metal cofactors to catalyze different challenging oxygen-dependent reactions through the formation of multi-protein complexes. Recent studies using cryo-electron microscopy, serial femtosecond crystallography at an X-ray free electron laser source, or single-crystal X-ray diffraction, have reported the structures of the active protein complexes, and revealed unprecedented insights into the molecular mechanisms of these three enzymes.
  •  
2.
  • Diamanti, Riccardo, et al. (författare)
  • Comparative structural analysis provides new insights into the function of R2-like ligand-binding oxidase
  • 2022
  • Ingår i: FEBS Letters. - : John Wiley & Sons. - 0014-5793 .- 1873-3468. ; 596:12, s. 1600-1610
  • Tidskriftsartikel (refereegranskat)abstract
    • R2-like ligand-binding oxidase (R2lox) is a ferritin-like protein that harbours a heterodinuclear manganese–iron active site. Although R2lox function is yet to be established, the enzyme binds a fatty acid ligand coordinating the metal centre and catalyses the formation of a tyrosine–valine ether cross-link in the protein scaffold upon O2 activation. Here, we characterized the ligands copurified with R2lox by mass spectrometry-based metabolomics. Moreover, we present the crystal structures of two new homologs of R2lox, from Saccharopolyspora erythraea and Sulfolobus acidocaldarius, at 1.38 Å and 2.26 Å resolution, respectively, providing the highest resolution structure for R2lox, as well as new insights into putative mechanisms regulating the function of the enzyme.
  •  
3.
  • John, Juliane, et al. (författare)
  • Redox-controlled reorganization and flavin strain within the ribonucleotide reductase R2b–NrdI complex monitored by serial femtosecond crystallography
  • 2022
  • Ingår i: eLIFE. - 2050-084X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Redox reactions are central to biochemistry and are both controlled by and induce protein structural changes. Here, we describe structural rearrangements and crosstalk within the Bacillus cereus ribonucleotide reductase R2b–NrdI complex, a di-metal carboxylate-flavoprotein system, as part of the mechanism generating the essential catalytic free radical of the enzyme. Femtosecond crystallography at an X-ray free electron laser was utilized to obtain structures at room temperature in defined redox states without suffering photoreduction. Together with density functional theory calculations, we show that the flavin is under steric strain in the R2b–NrdI protein complex, likely tuning its redox properties to promote superoxide generation. Moreover, a binding site in close vicinity to the expected flavin O2 interaction site is observed to be controlled by the redox state of the flavin and linked to the channel proposed to funnel the produced superoxide species from NrdI to the di-manganese site in protein R2b. These specific features are coupled to further structural changes around the R2b–NrdI interaction surface. The mechanistic implications for the control of reactive oxygen species and radical generation in protein R2b are discussed.
  •  
4.
  • John, Juliane, et al. (författare)
  • Redox-controlled reorganization and flavin strain within the ribonucleotide reductase R2b–NrdI complex monitored by serial femtosecond crystallography
  • 2022
  • Ingår i: eLIFE. - : eLife Sciences Publications Ltd. - 2050-084X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Redox reactions are central to biochemistry and are both controlled by and induce protein structural changes. Here, we describe structural rearrangements and crosstalk within the Bacillus cereus ribonucleotide reductase R2b–NrdI complex, a di-metal carboxylate-flavoprotein system, as part of the mechanism generating the essential catalytic free radical of the enzyme. Femtosecond crystallography at an X-ray free electron laser was utilized to obtain structures at room temperature in defined redox states without suffering photoreduction. Together with density functional theory calculations, we show that the flavin is under steric strain in the R2b–NrdI protein complex, likely tuning its redox properties to promote superoxide generation. Moreover, a binding site in close vicinity to the expected flavin O2 interaction site is observed to be controlled by the redox state of the flavin and linked to the channel proposed to funnel the produced superoxide species from NrdI to the di-manganese site in protein R2b. These specific features are coupled to further structural changes around the R2b–NrdI interaction surface. The mechanistic implications for the control of reactive oxygen species and radical generation in protein R2b are discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy