SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stöven Svenja) srt2:(2005-2009)"

Sökning: WFRF:(Stöven Svenja) > (2005-2009)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Delaney, Joseph R, et al. (författare)
  • Cooperative control of Drosophila immune responses by the JNK and NF-kappaB signaling pathways.
  • 2006
  • Ingår i: EMBO Journal. - : Wiley. - 0261-4189 .- 1460-2075. ; 25:13, s. 3068-77
  • Tidskriftsartikel (refereegranskat)abstract
    • Jun N-terminal kinase (JNK) signaling is a highly conserved pathway that controls both cytoskeletal remodeling and transcriptional regulation in response to a wide variety of signals. Despite the importance of JNK in the mammalian immune response, and various suggestions of its importance in Drosophila immunity, the actual contribution of JNK signaling in the Drosophila immune response has been unclear. Drosophila TAK1 has been implicated in the NF-kappaB/Relish-mediated activation of antimicrobial peptide genes. However, we demonstrate that Relish activation is intact in dTAK1 mutant animals, and that the immune response in these mutant animals was rescued by overexpression of a downstream JNKK. The expression of a JNK inhibitor and induction of JNK loss-of-function clones in immune responsive tissue revealed a general requirement for JNK signaling in the expression of antimicrobial peptides. Our data indicate that dTAK1 is not required for Relish activation, but instead is required in JNK signaling for antimicrobial peptide gene expression.
  •  
2.
  • Ertürk-Hasdemir, Deniz, et al. (författare)
  • Two roles for the Drosophila IKK complex in the activation of Relish and the induction of antimicrobial peptide genes
  • 2009
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 106:24, s. 9779-9784
  • Tidskriftsartikel (refereegranskat)abstract
    • The Drosophila NF-kappa B transcription factor Relish is an essential regulator of antimicrobial peptide gene induction after Gram-negative bacterial infection. Relish is a bipartite NF-kappa B precursor protein, with an N-terminal Rel homology domain and a C-terminal I kappa B-like domain, similar to mammalian p100 and p105. Unlike these mammalian homologs, Relish is endoproteolytically cleaved after infection, allowing the N-terminal NF-kappa B module to translocate to the nucleus. Signal-dependent activation of Relish, including cleavage, requires both the Drosophila I kappa B kinase (IKK) and death-related ced-3/Nedd2-like protein (DREDD), the Drosophila caspase-8 like protease. In this report, we show that the IKK complex controls Relish by direct phosphorylation on serines 528 and 529. Surprisingly, these phosphorylation sites are not required for Relish cleavage, nuclear translocation, or DNA binding. Instead they are critical for recruitment of RNA polymerase II and antimicrobial peptide gene induction, whereas IKK functions noncatalytically to support Dredd-mediated cleavage of Relish.
  •  
3.
  • Kleino, Anni, et al. (författare)
  • Inhibitor of apoptosis 2 and TAK1-binding protein are components of the Drosophila Imd pathway.
  • 2005
  • Ingår i: EMBO J. - 0261-4189. ; 24:19, s. 3423-34
  • Tidskriftsartikel (refereegranskat)abstract
    • The Imd signaling cascade, similar to the mammalian TNF-receptor pathway, controls antimicrobial peptide expression in Drosophila. We performed a large-scale RNAi screen to identify novel components of the Imd pathway in Drosophila S2 cells. In all, 6713 dsRNAs from an S2 cell-derived cDNA library were analyzed for their effect on Attacin promoter activity in response to Escherichia coli. We identified seven gene products required for the Attacin response in vitro, including two novel Imd pathway components: inhibitor of apoptosis 2 (Iap2) and transforming growth factor-activated kinase 1 (TAK1)-binding protein (TAB). Iap2 is required for antimicrobial peptide response also by the fat body in vivo. Both these factors function downstream of Imd. Neither TAB nor Iap2 is required for Relish cleavage, but may be involved in Relish nuclear localization in vitro, suggesting a novel mode of regulation of the Imd pathway. Our results show that an RNAi-based approach is suitable to identify genes in conserved signaling cascades.
  •  
4.
  • Vonkavaara, Malin, 1981-, et al. (författare)
  • Drosophila melanogaster as a model for elucidating the pathogenicity of Francisella tularensis
  • 2008
  • Ingår i: Cellular Microbiology. - : Hindawi Limited. - 1462-5814 .- 1462-5822. ; 10:6, s. 1327-1338
  • Tidskriftsartikel (refereegranskat)abstract
    • Drosophila melanogaster is a widely used model organism for research on innate immunity and serves as an experimental model for infectious diseases. The aetiological agent of the zoonotic disease tularaemia, Francisella tularensis, can be transmitted by ticks and mosquitoes and Drosophila might be a useful, genetically amenable model host to elucidate the interactions between the bacterium and its arthropod vectors. We found that the live vaccine strain of F. tularensis was phagocytosed by Drosophila and multiplied in fly haemocytes in vitro and in vivo. Bacteria injected into flies resided both inside haemocytes and extracellularly in the open circulatory system. A continuous activation of the humoral immune response, i.e. production of antimicrobial peptides under control of the imd/Relish signalling pathway, was observed and it may have contributed to the relative resistance to F. tularensis as flies defective in the imd/Relish pathway died rapidly. Importantly, bacterial strains deficient for genes of the F. tularensis intracellular growth locus or the macrophage growth locus were attenuated in D. melanogaster. Our results demonstrate that D. melanogaster is a suitable model for the analysis of interactions between F. tularensis and its arthropod hosts and that it can also be used to identify F. tularensis virulence factors relevant for mammalian hosts.
  •  
5.
  • Wiklund, Magda-Lena, et al. (författare)
  • The N-terminal half of the Drosophila Rel/NF-kappa B factor Relish, REL-68, constitutively activates transcription of specific Relish target genes
  • 2009
  • Ingår i: Developmental and Comparative Immunology. - New York : Elsevier BV. - 0145-305X .- 1879-0089. ; 33:5, s. 690-696
  • Tidskriftsartikel (refereegranskat)abstract
    • The Rel/NF-kappa B transcription factor Relish is a major regulator of the antimicrobial response in Drosophila. Upon immune challenge, Relish is cleaved to generate two fragments, the DNA-binding transcription factor REL-68 and the I kappa B-like REL-49. Using transgenic fly strains we show here that overexpression of REL-68 separately from REL-49 is sufficient to activate strong constitutive transcription of the Diptericin gene, but little constitutive or inducible transcription of Attacin and Cecropin, two other Relish target genes. Their transcription may therefore require additional modifications of Relish. However, phosphorylation of the conserved serine residue S431 is not involved in such modifications. This is unlike p65 and Dorsal, which are modulated by phosphorylation at their homologous site. In contrast to other I kappa B proteins, overexpression of REL-49 had no inhibitory effect on Relish-dependent transcription. Instead, we propose that the C-terminal I kappa B-like domain executes a scaffolding and recruiting function for full activation of Relish.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy