SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stöven Svenja) srt2:(2010-2014)"

Sökning: WFRF:(Stöven Svenja) > (2010-2014)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Eneslätt, Kjell, et al. (författare)
  • Persistence of cell-mediated immunity three decades after vaccination with the live vaccine strain of Francisella tularensis
  • 2011
  • Ingår i: European Journal of Immunology. - Weinheim : Wiley-VCH Verlagsgesellschaft. - 0014-2980 .- 1521-4141. ; 41:4, s. 974-980
  • Tidskriftsartikel (refereegranskat)abstract
    • The efficacy of many vaccines against intracellular bacteria depends on the generation of cell-mediated immunity, but studies to determine the duration of immunity are usually confounded by re-exposure. The causative agent of tularemia, Francisella tularensis, is rare in most areas and, therefore, tularemia vaccination is an interesting model for studies of the longevity of vaccine-induced cell-mediated immunity. Here, lymphocyte proliferation and cytokine production in response to F. tularensis were assayed in two groups of 16 individuals, vaccinated 1-3 or 27-34 years previously. As compared to naïve individuals, vaccinees of both groups showed higher proliferative responses and, out of 17 cytokines assayed, higher levels of MIP-1β, IFN-γ, IL-10, and IL-5 in response to recall stimulation. The responses were very similar in the two groups of vaccinees. A statistical model was developed to predict the immune status of the individuals and by use of two parameters, proliferative responses and levels of IFN-γ, 91.1% of the individuals were correctly classified. Using flow cytometry analysis, we demonstrated that during recall stimulation, expression of IFN-γ by CD4(+) CCR7(+) , CD4(+) CD62L(+) , CD8(+) CCR7(+) , and CD8(+) CD62L(+) cells significantly increased in samples from vaccinated donors. In conclusion, cell-mediated immunity was found to persist three decades after tularemia vaccination without evidence of decline.
  •  
2.
  • Eneslätt, Kjell, et al. (författare)
  • Signatures of T cells as correlates of immunity to Francisella tularensis
  • 2012
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7:3, s. e32367-
  • Tidskriftsartikel (refereegranskat)abstract
    • Tularemia or vaccination with the live vaccine strain (LVS) of Francisella tularensis confers long-lived cell-mediated immunity. We hypothesized that this immunity depends on polyfunctional memory T cells, i.e., CD4(+) and/or CD8(+) T cells with the capability to simultaneously express several functional markers. Multiparametric flow cytometry, measurement of secreted cytokines, and analysis of lymphocyte proliferation were used to characterize in vitro recall responses of peripheral blood mononuclear cells (PBMC) to killed F. tularensis antigens from the LVS or Schu S4 strains. PBMC responses were compared between individuals who had contracted tularemia, had been vaccinated, or had not been exposed to F. tularensis (naive). Significant differences were detected between either of the immune donor groups and naive individuals for secreted levels of IL-5, IL-6, IL-10, IL-12, IL-13, IFN-gamma, MCP-1, and MIP-1 beta. Expression of IFN-gamma, MIP-1 beta, and CD107a by CD4(+)CD45RO(+) or CD8(+) CD45RO(+) T cells correlated to antigen concentrations. In particular, IFN-gamma and MIP-1 beta strongly discriminated between immune and naive individuals. Only one cytokine, IL-6, discriminated between the two groups of immune individuals. Notably, IL-2- or TNF-alpha-secretion was low. Our results identify functional signatures of T cells that may serve as correlates of immunity and protection against F. tularensis.
  •  
3.
  •  
4.
  • Vonkavaara, Malin, 1981-, et al. (författare)
  • Francisella is sensitive to insect antimicrobial peptides
  • 2013
  • Ingår i: Journal of Innate Immunity. - Basel : Karger. - 1662-811X .- 1662-8128. ; 5:1, s. 50-59
  • Tidskriftsartikel (refereegranskat)abstract
    • Francisella tularensis causes the zoonotic disease tularemia. Arthropod vectors are important transmission routes for the disease, although it is not known how Francisella survives the efficient arthropod immune response. Here, we used Drosophila melanogaster as a model host for Francisella infections and investigated whether the bacteria are resistant to insect humoral immune responses, in particular to the antimicrobial peptides (AMPs) secreted into the insect hemolymph. Moreover, we asked to which extent such resistance might depend on LPS structure and surface characteristics of the bacteria. We analyzed F. novicida mutant strains in genes, directly or indirectly involved in specific steps of LPS biosynthesis, for virulence in wildtype and Relish E20 immune deficient flies, and tested selected mutants for sensitivity to AMPs in vitro. We demonstrate that Francisella is sensitive to specific fly AMPs, i.e. Attacin, Cecropin, Drosocin and Drosomycin. Furthermore, six bacterial genes, kpsF, manB, lpxF, slt, tolA and pal, were found to be required for resistance to Relish-dependent immune responses, illustrating the importance of structural details of Francisella lipid A and Kdo core for interactions with AMPs. Interestingly, a more negative surface charge and lack of O-antigen did not render mutant bacteria more sensitive to cationic AMPs and attenuated virulence in flies.
  •  
5.
  • Vonkavaara, Malin, 1981- (författare)
  • Host-pathogen interactions between Francisella tularensis and Drosophila melanogaster
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Francisella tularensis is a highly virulent Gram-negative bacterium causing the zoonotic disease tularemia. Arthropod-borne transmission plays an important role in transferring the disease to humans. F. tularensis induces very low amounts of pro-inflammatory cytokines during infection, due to inhibition of immune signaling pathways and an unusual structure of its lipopolysaccharide (LPS). To date, there is no vaccine available that is approved for public use, although an attenuated live vaccine strain (LVS) is commonly used as a model of the more infectious Francisella strains. To produce an effective vaccine it is important to understand the lifecycle of F. tularensis, including the interaction with the arthropod hosts. Drosophila melanogaster is a widely used model organism, which is increasingly being used in host-pathogen interaction studies as the immune pathways in flies are evolutionary conserved to the immune pathways in humans. An important part of the immune defense of D. melanogaster as well as of arthropods in general is the production of antimicrobial peptides. These peptides primarily target the bacterial membrane, inhibiting bacterial proliferation or directly killing the bacteria. The aim of this thesis was to establish D. melanogaster as a model for F. tularensis infection and as a model for arthropod vectors of F. tularensis. Also, to use D. melanogaster to further study the interaction between F. tularensis and arthropod vectors, with specific regard to the host immune signaling and arthropod antimicrobial peptides. F. tularensis LVS infects and kills D. melanogaster in a dose-dependent manner. During an infection, bacteria are found inside fly hemocytes, phagocytic blood cells, similar as in human infections. In mammals genes of the intracellular growth locus (igl) are important for virulence. In this work it is shown that the igl genes are also important for virulence in flies. These results demonstrate that D. melanogaster can be used as a model to study F. tularensis-host interactions. LVS induces a prolonged activation of several immune signaling pathways in the fly, but seem to interfere with the JNK signaling pathway, similarly as in mammals. Overexpression of the JNK pathway in flies has a protective effect on fly survival. Relish mutant flies, essentially lacking a production of antimicrobial peptides, succumb quickly to a F. tularensis infection, however, F. tularensis is relatively resistant to individual D. melanogaster antimicrobial peptides. Overexpressing antimicrobial peptide genes in wildtype flies has a protective effect on F. tularensis infection, suggesting that a combination of several antimicrobial peptides is necessary to control F. tularensis. The production of numerous antimicrobial peptides might be why D. melanogaster survives relatively long after infection. An intact structure of the lipid A and of the Kdo core of Francisella LPS is necessary for resistance to antimicrobial peptides and full virulence in flies. These results are similar to previous studies in mammals. In contrast to studies in mammals, genes affecting the O-antigen of F. tularensis LPS are not necessary for virulence in flies. In conclusion, this thesis work shows that D. melanogaster can be used as a model for studying F. tularensis-host interactions. LVS activates several immune pathways during infection, but interfere with the JNK pathway. Overexpressing the JNK pathway results in increased survival of flies infected with LVS. Despite rather high resistance to individual antimicrobial peptides, exposure to a combination of several D. melanogaster antimicrobial peptides reduces the virulence of F. tularensis.
  •  
6.
  • Åhlund, Monika K, et al. (författare)
  • Directed screen of Francisella novicida virulence determinants using Drosophila melanogaster
  • 2010
  • Ingår i: Infection and Immunity. - : ASM International. - 0019-9567 .- 1098-5522. ; 78:7, s. 3118-3128
  • Tidskriftsartikel (refereegranskat)abstract
    • Francisella tularensis is a highly virulent, facultative intracellular human pathogen whose virulence mechanisms are not well understood. Occasional outbreaks of tularemia and the potential use of F. tularensis as a bioterrorist agent warrant better knowledge about the pathogenicity of this bacterium. Thus far, genome-wide in vivo screens for virulence factors have been performed in mice, all however restricted by the necessity to apply competition-based, negative-selection assays. We wanted to individually evaluate putative virulence determinants suggested by such assays and performed directed screening of 249 F. novicida transposon insertion mutants by using survival of infected fruit flies as a measure of bacterial virulence. Some 20% of the genes tested were required for normal virulence in flies; most of these had not previously been investigated in detail in vitro or in vivo. We further characterized their involvement in bacterial proliferation and pathogenicity in flies and in mouse macrophages. Hierarchical cluster analysis of mutant phenotypes indicated a functional linkage between clustered genes. One cluster grouped all but four genes of the Francisella pathogenicity island and other loci required for intracellular survival. We also identified genes involved in adaptation to oxidative stress and genes which might induce host energy wasting. Several genes related to type IV pilus formation demonstrated hypervirulent mutant phenotypes. Collectively, the data demonstrate that the bacteria in part use similar virulence mechanisms in mammals as in Drosophila melanogaster but that a considerable proportion of the virulence factors active in mammals are dispensable for pathogenicity in the insect model.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy