SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stammet P.) srt2:(2020-2023)"

Sökning: WFRF:(Stammet P.) > (2020-2023)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Peder, et al. (författare)
  • Predicting neurological outcome after out-of-hospital cardiac arrest with cumulative information; development and internal validation of an artificial neural network algorithm
  • 2021
  • Ingår i: Critical Care. - : Springer Science and Business Media LLC. - 1364-8535. ; 25:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundPrognostication of neurological outcome in patients who remain comatose after cardiac arrest resuscitation is complex. Clinical variables, as well as biomarkers of brain injury, cardiac injury, and systemic inflammation, all yield some prognostic value. We hypothesised that cumulative information obtained during the first three days of intensive care could produce a reliable model for predicting neurological outcome following out-of-hospital cardiac arrest (OHCA) using artificial neural network (ANN) with and without biomarkers.MethodsWe performed a post hoc analysis of 932 patients from the Target Temperature Management trial. We focused on comatose patients at 24, 48, and 72 h post-cardiac arrest and excluded patients who were awake or deceased at these time points. 80% of the patients were allocated for model development (training set) and 20% for internal validation (test set). To investigate the prognostic potential of different levels of biomarkers (clinically available and research-grade), patients' background information, and intensive care observation and treatment, we created three models for each time point: (1) clinical variables, (2) adding clinically accessible biomarkers, e.g., neuron-specific enolase (NSE) and (3) adding research-grade biomarkers, e.g., neurofilament light (NFL). Patient outcome was the dichotomised Cerebral Performance Category (CPC) at six months; a good outcome was defined as CPC 1-2 whilst a poor outcome was defined as CPC 3-5. The area under the receiver operating characteristic curve (AUROC) was calculated for all test sets.ResultsAUROC remained below 90% when using only clinical variables throughout the first three days in the ICU. Adding clinically accessible biomarkers such as NSE, AUROC increased from 82 to 94% (p<0.01). The prognostic accuracy remained excellent from day 1 to day 3 with an AUROC at approximately 95% when adding research-grade biomarkers. The models which included NSE after 72 h and NFL on any of the three days had a low risk of false-positive predictions while retaining a low number of false-negative predictions.ConclusionsIn this exploratory study, ANNs provided good to excellent prognostic accuracy in predicting neurological outcome in comatose patients post OHCA. The models which included NSE after 72 h and NFL on all days showed promising prognostic performance.
  •  
2.
  • Ashton, Nicholas J., et al. (författare)
  • Alzheimer Disease Blood Biomarkers in Patients With Out-of-Hospital Cardiac Arrest
  • 2023
  • Ingår i: Jama Neurology. - : American Medical Association (AMA). - 2168-6149. ; 80:4, s. 388-396
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE Blood phosphorylated tau (p-tau) and amyloid-13 peptides (A13) are promising peripheral biomarkers of Alzheimer disease (AD) pathology. However, their potential alterations due to alternative mechanisms, such as hypoxia in patients resuscitated from cardiac arrest, are not known. OBJECTIVE To evaluate whether the levels and trajectories of blood p-tau, A1342, and A1340 following cardiac arrest, in comparison with neural injury markers neurofilament light (NfL) and total tau (t-tau), can be used for neurological prognostication following cardiac arrest.DESIGN, SETTING, AND PARTICIPANTS This prospective clinical biobank study used data from the randomized Target Temperature Management After Out-of-Hospital Cardiac Arrest (TTM) trial. Unconscious patients with cardiac arrest of presumed cardiac origin were included between November 11, 2010, and January 10, 2013, from 29 international sites. Serum analysis for serum NfL and t-tau were performed between August 1 and August 23, 2017. Serum p-tau, A1342, and A1340 were analyzed between July 1 and July 15, 2021, and between May 13 and May 25, 2022. A total of 717 participants from the TTM cohort were examined: an initial discovery subset (n = 80) and a validation subset. Both subsets were evenly distributed for good and poor neurological outcome after cardiac arrest.EXPOSURES Serum p-tau, A1342, and A1340 concentrations using single molecule array technology. Serum levels of NfL and t-tau were included as comparators.MAIN OUTCOMES AND MEASURES Blood biomarker levels at 24 hours, 48 hours, and 72 hours after cardiac arrest. Poor neurologic outcome at 6-month follow-up, defined according to the cerebral performance category scale as category 3 (severe cerebral disability), 4 (coma), or 5 (brain death).RESULTS This study included 717 participants (137 [19.1%] female and 580 male [80.9%]; mean [SD] age, 63.9 [13.5] years) who experienced out-of-hospital cardiac arrest. Significantly elevated serum p-tau levels were observed at 24 hours, 48 hours, and 72 hours in cardiac arrest patients with poor neurological outcome. The magnitude and prognostication of the change was greater at 24 hours (area under the receiver operating characteristic curve [AUC], 0.96; 95% CI, 0.95-0.97), which was similar to NfL (AUC, 0.94; 95% CI, 0.92-0.96). However, at later time points, p-tau levels decreased and were weakly associated with neurological outcome. In contrast, NfL and t-tau maintained high diagnostic accuracies, even 72 hours after cardiac arrest. Serum A1342 and A1340 concentrations increased over time in most patients but were only weakly associated with neurological outcome.CONCLUSIONS AND RELEVANCE In this case-control study, blood biomarkers indicative of AD pathology demonstrated different dynamics of change after cardiac arrest. The increase of p-tau at 24 hours after cardiac arrest suggests a rapid secretion from the interstitial fluid following hypoxic-ischemic brain injury rather than ongoing neuronal injury like NfL or t-tau. In contrast, delayed increases of A13 peptides after cardiac arrest indicate activation of amyloidogenic processing in response to ischemia.
  •  
3.
  • Holgersson, Johan, et al. (författare)
  • Hypothermic versus Normothermic Temperature Control after Cardiac Arrest
  • 2022
  • Ingår i: NEJM Evidence. - 2766-5526. ; 1:11, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUNDThe evidence for temperature control for comatose survivors of cardiac arrest is inconclusive. Controversy exists as to whether the effects of hypothermia differ per the circumstances of the cardiac arrest or patient characteristics.METHODSAn individual patient data meta-analysis of the Targeted Temperature Management at 33°C versus 36°C after Cardiac Arrest (TTM) and Hypothermia versus Normothermia after Out-of-Hospital Cardiac Arrest (TTM2) trials was conducted. The intervention was hypothermia at 33°C and the comparator was normothermia. The primary outcome was all-cause mortality at 6 months. Secondary outcomes included poor functional outcome (modified Rankin scale score of 4 to 6) at 6 months. Predefined subgroups based on the design variables in the original trials were tested for interaction with the intervention as follows: age (older or younger than the median), sex (female or male), initial cardiac rhythm (shockable or nonshockable), time to return of spontaneous circulation (above or below the median), and circulatory shock on admission (presence or absence).RESULTSThe primary analyses included 2800 patients, with 1403 assigned to hypothermia and 1397 to normothermia. Death occurred for 691 of 1398 participants (49.4%) in the hypothermia group and 666 of 1391 participants (47.9%) in the normothermia group (relative risk with hypothermia, 1.03; 95% confidence interval [CI], 0.96 to 1.11; P=0.41). A poor functional outcome occurred for 733 of 1350 participants (54.3%) in the hypothermia group and 718 of 1330 participants (54.0%) in the normothermia group (relative risk with hypothermia, 1.01; 95% CI, 0.94 to 1.08; P=0.88). Outcomes were consistent in the predefined subgroups.CONCLUSIONSHypothermia at 33°C did not decrease 6-month mortality compared with normothermia after out-of-hospital cardiac arrest. (Funded by Vetenskapsrådet; ClinicalTrials.gov numbers NCT02908308 and NCT01020916.)
  •  
4.
  • Moseby-Knappe, Marion, et al. (författare)
  • Serum markers of brain injury can predict good neurological outcome after out-of-hospital cardiac arrest
  • 2021
  • Ingår i: Intensive Care Medicine. - : Springer Science and Business Media LLC. - 0342-4642 .- 1432-1238. ; 47, s. 984-994
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose The majority of unconscious patients after cardiac arrest (CA) do not fulfill guideline criteria for a likely poor outcome, their prognosis is considered "indeterminate". We compared brain injury markers in blood for prediction of good outcome and for identifying false positive predictions of poor outcome as recommended by guidelines. Methods Retrospective analysis of prospectively collected serum samples at 24, 48 and 72 h post arrest within the Target Temperature Management after out-of-hospital cardiac arrest (TTM)-trial. Clinically available markers neuron-specific enolase (NSE) and S100B, and novel markers neurofilament light chain (NFL), total tau, ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) and glial fibrillary acidic protein (GFAP) were analysed. Normal levels with a priori cutoffs specified by reference laboratories or defined from literature were used to predict good outcome (no to moderate disability, Cerebral Performance Category scale 1-2) at 6 months. Results Seven hundred and seventeen patients were included. Normal NFL, tau and GFAP had the highest sensitivities (97.2-98% of poor outcome patients had abnormal serum levels) and NPV (normal levels predicted good outcome in 87-95% of patients). Normal S100B and NSE predicted good outcome with NPV 76-82.2%. Normal NSE correctly identified 67/190 (35.3%) patients with good outcome among those classified as "indeterminate outcome" by guidelines. Five patients with single pathological prognostic findings despite normal biomarkers had good outcome. Conclusion Low levels of brain injury markers in blood are associated with good neurological outcome after CA. Incorporating biomarkers into neuroprognostication may help prevent premature withdrawal of life-sustaining therapy.
  •  
5.
  • Ebner, Florian, et al. (författare)
  • Serum GFAP and UCH-L1 for the prediction of neurological outcome in comatose cardiac arrest patients
  • 2020
  • Ingår i: Resuscitation. - : Elsevier BV. - 0300-9572. ; 154, s. 61-68
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Neurological outcome prediction is crucial early after cardiac arrest. Serum biomarkers released from brain cells after hypoxic-ischaemic injury may aid in outcome prediction. The only serum biomarker presently recommended in the European Resuscitation Council prognostication guidelines is neuron-specific enolase (NSE), but NSE has limitations. In this study, we therefore analyzed the outcome predictive accuracy of the serum biomarkers glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase-L1 (UCH-L1) in patients after cardiac arrest. Methods: Serum GFAP and UCH-L1 were collected at 24, 48 and 72 h after cardiac arrest. The primary outcome was neurological function at 6-month follow-up assessed by the cerebral performance category scale (CPC), dichotomized into good (CPC1-2) and poor (CPC3-5). Prognostic accuracies were tested with receiver-operating characteristics by calculating the area under the receiver-operating curve (AUROC) and compared to the AUROC of NSE. Results: 717 patients were included in the study. GFAP and UCH-L1 discriminated between good and poor neurological outcome at all time-points when used alone (AUROC GFAP 0.88–0.89; UCH-L1 0.85–0.87) or in combination (AUROC 0.90–0.91). The combined model was superior to GFAP and UCH-L1 separately and NSE (AUROC 0.75–0.85) at all time-points. At specificities ≥95%, the combined model predicted poor outcome with a higher sensitivity than NSE at 24 h and with similar sensitivities at 48 and 72 h. Conclusion: GFAP and UCH-L1 predicted poor neurological outcome with high accuracy. Their combination may be of special interest for early prognostication after cardiac arrest where it performed significantly better than the currently recommended biomarker NSE.
  •  
6.
  • Lagebrant, Alice, et al. (författare)
  • Brain injury markers in blood predict signs of hypoxic ischaemic encephalopathy on head computed tomography after cardiac arrest
  • 2023
  • Ingår i: Resuscitation. - : Elsevier. - 0300-9572 .- 1873-1570. ; 184
  • Tidskriftsartikel (refereegranskat)abstract
    • Background/Aim: Signs of hypoxic ischaemic encephalopathy (HIE) on head computed tomography (CT) predicts poor neurological outcome after cardiac arrest. We explore whether levels of brain injury markers in blood could predict the likelihood of HIE on CT.Methods: Retrospective analysis of CT performed at 24-168 h post cardiac arrest on clinical indication within the Target Temperature Management after out-of-hospital cardiac arrest-trial. Biomarkers prospectively collected at 24-and 48 h post-arrest were analysed for neuron specific enolase (NSE), neurofilament light (NFL), total-tau and glial fibrillary acidic protein (GFAP). HIE was assessed through visual evaluation and quantitative grey-white-matter ratio (GWR) was retrospectively calculated on Swedish subjects with original images available.Results: In total, 95 patients were included. The performance to predict HIE on CT (performed at IQR 73-116 h) at 48 h was similar for all biomark-ers, assessed as area under the receiving operating characteristic curve (AUC) NSE 0.82 (0.71-0.94), NFL 0.79 (0.67-0.91), total-tau 0.84 (0.74- 0.95), GFAP 0.79 (0.67-0.90). The predictive performance of biomarker levels at 24 h was AUC 0.72-0.81. At 48 h biomarker levels below Youden Index accurately excluded HIE in 77.3-91.7% (negative predictive value) and levels above Youden Index correctly predicted HIE in 73.3-83.7% (positive predictive value). NSE cut-off at 48 h was 48 ng/ml. Elevated biomarker levels irrespective of timepoint significantly correlated with lower GWR.Conclusion: Biomarker levels can assess the likelihood of a patient presenting with HIE on CT and could be used to select suitable patients for CT-examination during neurological prognostication in unconscious cardiac arrest patients.
  •  
7.
  • Stefanizzi, Francesca M., et al. (författare)
  • Circular RNAs to predict clinical outcome after cardiac arrest
  • 2022
  • Ingår i: Intensive Care Medicine Experimental. - : Springer Science and Business Media LLC. - 2197-425X. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Cardiac arrest (CA) represents the third leading cause of death worldwide. Among patients resuscitated and admitted to hospital, death and severe neurological sequelae are frequent but difficult to predict. Blood biomarkers offer clinicians the potential to improve prognostication. Previous studies suggest that circulating non-coding RNAs constitute a reservoir of novel biomarkers. Therefore, this study aims to identify circulating circular RNAs (circRNAs) associated with clinical outcome after CA. Results: Whole blood samples obtained 48 h after return of spontaneous circulation in 588 survivors from CA enrolled in the Target Temperature Management trial (TTM) were used in this study. Whole transcriptome RNA sequencing in 2 groups of 23 sex-matched patients identified 28 circRNAs associated with neurological outcome and survival. The circRNA circNFAT5 was selected for further analysis using quantitative PCR. In the TTM-trial (n = 542), circNFAT5 was upregulated in patients with poor outcome as compared to patients with good neurological outcome (p < 0.001). This increase was independent of TTM regimen and sex. The adjusted odds ratio of circNFAT5 to predict neurological outcome was 1.39 [1.07–1.83] (OR [95% confidence interval]). CircNFAT5 predicted 6-month survival with an adjusted hazard ratio of 1.31 [1.13–1.52]. Conclusion: We identified circulating circRNAs associated with clinical outcome after CA, among which circNFAT5 may have potential to aid in predicting neurological outcome and survival when used in combination with established biomarkers of CA.
  •  
8.
  • Stefanizzi, Francesca Maria, et al. (författare)
  • Circulating Levels of Brain-Enriched MicroRNAs Correlate with Neuron Specific Enolase after Cardiac Arrest-A Substudy of the Target Temperature Management Trial
  • 2020
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1422-0067. ; 21:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Outcome prognostication after cardiac arrest (CA) is challenging. Current multimodal prediction approaches would benefit from new biomarkers. MicroRNAs constitute a novel class of disease markers and circulating levels of brain-enriched ones have been associated with outcome after CA. To determine whether these levels reflect the extent of brain damage in CA patients, we assessed their correlation with neuron-specific enolase (NSE), a marker of brain damage. Blood samples taken 48 h after return of spontaneous circulation from two groups of patients from the Targeted Temperature Management trial were used. Patients were grouped depending on their neurological outcome at six months. Circulating levels of microRNAs were assessed by sequencing. NSE was measured at the same time-point. Among the 673 microRNAs detected, brain-enriched miR9-3p, miR124-3p and miR129-5p positively correlated with NSE levels (all p < 0.001). Interestingly, these correlations were absent when only the good outcome group was analyzed (p > 0.5). Moreover, these correlations were unaffected by demographic and clinical characteristics. All three microRNAs predicted neurological outcome at 6 months. Circulating levels of brain-enriched microRNAs are correlated with NSE levels and hence can reflect the extent of brain injury in patients after CA. This observation strengthens the potential of brain-enriched microRNAs to aid in outcome prognostication after CA.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy