SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stefansson Sigurd O) srt2:(2005-2009)"

Sökning: WFRF:(Stefansson Sigurd O) > (2005-2009)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ebbesson, Lars O. E., et al. (författare)
  • Exposure to continuous light disrupts retinal innervation of the preoptic nucleus during parr-smolt transformation in Atlantic salmon
  • 2007
  • Ingår i: Aquaculture. - : Elsevier BV. - 0044-8486 .- 1873-5622. ; 273:2-3, s. 345-349
  • Konferensbidrag (refereegranskat)abstract
    • High quality salmon smolts are essential for aquaculture, enhancement programs and wild populations. However, intensification of aquaculture smolt production and changes in natural habitats can cause sub-optimal environmental conditions, which may result in poor smolt quality. The salmon brain, as the integrator of environmental information, plays a focal role in relaying this information through the light-brain-pituitary axis, which includes retinal and pineal innervation of the hypothalamus. Here we investigated the effect of rearing juvenile Atlantic salmon, Salmo salar, under constant light (LL) on optic nerve fiber growth into the hypothalamus. This was compared with the normal increased fiber growth in fish reared under a simulated-natural photoperiod (LDN). Parr were sampled from the LDN group in February and from the LDN and LL groups in May (peak smolt status for the LDN group). Retinohypothalamic projections to the preoptic area were traced using 1, 1'-dioctadecyl-3,3, 3,3-tetramethylindocarbocyanine perchlorate (DiI) and confocal laser scanning microscopy. Data showed that parr exposed to LL did not develop the same extensive retinal innervation to the preoptic nucleus (NPO) observed in control salmon smolts raised under LDN. Since the cells in NPO are central pituitary regulatory neurones, the increased retinohypothalamic innervation during normal smoltification may be responsible for the increased endocrine response to photoperiod information. The deprivation of photoperiod information, during continuous light exposure, may inhibit the natural developmental program to proceed during the parr-smolt transformation. (C) 2007 Elsevier B.V. All rights reserved.
  •  
2.
  • Nilsen, Tom O, et al. (författare)
  • Differential expression of gill Na+,K+-ATPase alpha- and beta-subunits, Na+,K+,2Cl- cotransporter and CFTR anion channel in juvenile anadromous and landlocked Atlantic salmon Salmo salar.
  • 2007
  • Ingår i: The Journal of experimental biology. - : The Company of Biologists. - 0022-0949 .- 1477-9145. ; 210:Pt 16, s. 2885-96
  • Tidskriftsartikel (refereegranskat)abstract
    • This study examines changes in gill Na(+),K(+)-ATPase (NKA) alpha- and beta-subunit isoforms, Na(+),K(+),2Cl(-) cotransporter (NKCC) and cystic fibrosis transmembrane conductance regulator (CFTR I and II) in anadromous and landlocked strains of Atlantic salmon during parr-smolt transformation, and after seawater (SW) transfer in May/June. Gill NKA activity increased from February through April, May and June among both strains in freshwater (FW), with peak enzyme activity in the landlocked salmon being 50% below that of the anadromous fish in May and June. Gill NKA-alpha1b, -alpha3, -beta(1) and NKCC mRNA levels in anadromous salmon increased transiently, reaching peak levels in smolts in April/May, whereas no similar smolt-related upregulation of these transcripts occurred in juvenile landlocked salmon. Gill NKA-alpha1a mRNA decreased significantly in anadromous salmon from February through June, whereas alpha1a levels in landlocked salmon, after an initial decrease in April, remained significantly higher than those of the anadromous smolts in May and June. Following SW transfer, gill NKA-alpha1b and NKCC mRNA increased in both strains, whereas NKA-alpha1a decreased. Both strains exhibited a transient increase in gill NKA alpha-protein abundance, with peak levels in May. Gill alpha-protein abundance was lower in SW than corresponding FW values in June. Gill NKCC protein abundance increased transiently in anadromous fish, with peak levels in May, whereas a slight increase was observed in landlocked salmon in May, increasing to peak levels in June. Gill CFTR I mRNA levels increased significantly from February to April in both strains, followed by a slight, though not significant increase in May and June. CFTR I mRNA levels were significantly lower in landlocked than anadromous salmon in April/June. Gill CFTR II mRNA levels did not change significantly in either strain. Our findings demonstrates that differential expression of gill NKA-alpha1a, -alpha1b and -alpha3 isoforms may be important for potential functional differences in NKA, both during preparatory development and during salinity adjustments in salmon. Furthermore, landlocked salmon have lost some of the unique preparatory upregulation of gill NKA, NKCC and, to some extent, CFTR anion channel associated with the development of hypo-osmoregulatory ability in anadromous salmon.
  •  
3.
  • Nilsen, Tom O, et al. (författare)
  • Endocrine systems in juvenile anadromous and landlocked Atlantic salmon (Salmo salar): seasonal development and seawater acclimation.
  • 2008
  • Ingår i: General and comparative endocrinology. - : Elsevier BV. - 0016-6480. ; 155:3, s. 762-72
  • Tidskriftsartikel (refereegranskat)abstract
    • The present study compares developmental changes in plasma levels of growth hormone (GH), insulin-like growth factor I (IGF-I) and cortisol, and mRNA levels of their receptors and the prolactin receptor (PRLR) in the gill of anadromous and landlocked Atlantic salmon during the spring parr-smolt transformation (smoltification) period and following four days and one month seawater (SW) acclimation. Plasma GH and gill GH receptor (GHR) mRNA levels increased continuously during the spring smoltification period in the anadromous, but not in landlocked salmon. There were no differences in plasma IGF-I levels between strains, or any increase during smoltification. Gill IGF-I and IGF-I receptor (IGF-IR) mRNA levels increased in anadromous salmon during smoltification, with no changes observed in landlocked fish. Gill PRLR mRNA levels remained stable in both strains during spring. Plasma cortisol levels in anadromous salmon increased 5-fold in May and June, but not in landlocked salmon. Gill glucocorticoid receptor (GR) mRNA levels were elevated in both strains at the time of peak smoltification in anadromous salmon, while mineralocorticoid receptor (MR) mRNA levels remained stable. Only anadromous salmon showed an increase of gill 11beta-hydroxysteroid dehydrogenase type-2 (11beta-HSD2) mRNA levels in May. GH and gill GHR mRNA levels increased in both strains following four days of SW exposure in mid-May, whereas only the anadromous salmon displayed elevated plasma GH and GHR mRNA after one month in SW. Plasma IGF-I increased after four days in SW in both strains, decreasing in both strains after one month in SW. Gill IGF-I mRNA levels were only increased in landlocked salmon after 4days in SW. Gill IGF-IR mRNA levels in SW did not differ from FW levels in either strain. Gill PRLR mRNA did not change after four days of SW exposure, and decreased in both strains after one month in SW. Plasma cortisol levels did not change following SW exposure in either strain. Gill GR, 11beta-HSD2 and MR mRNA levels increased after four days in SW in both strains, whereas only the anadromous strain maintained elevated gill GR and 11beta-HSD2 mRNA levels after one month in SW. The results indicate that hormones and receptors of the GH and cortisol axes are present at significantly lower levels during spring development and SW acclimation in landlocked relative to anadromous salmon. These findings suggest that attenuation of GH and cortisol axes may, at least partially, result in reduced preparatory upregulation of key gill ion-secretory proteins, possibly a result of reduced selection pressure for marine adaptations in landlocked salmon.
  •  
4.
  • Ebbesson, Lars, et al. (författare)
  • Daily endocrine profiles in parr and smolt Atlantic salmon.
  • 2008
  • Ingår i: Comparative Biochemistry and Physiology A. - : Elsevier BV. - 1531-4332 .- 1095-6433. ; 151, s. 698-704
  • Tidskriftsartikel (refereegranskat)abstract
    • To elucidate possible mechanisms behind the endocrine control of parr-smolt transformation, the daily plasma profiles in thyroid hormones (TH; free thyroxine (FT(4)), total thyroxine (TT(4)), and total 3,5,3'-triiodothyronine (TT(3))), growth hormone (GH) and cortisol were studied in Atlantic salmon parr and smolts under simulated-natural winter (8 L:16D) and spring (16.5 L:7.5D) photoperiods, respectively. Overall, TT(4), TT(3) and GH levels were higher in smolts than in parr, whereas FT(4) levels fluctuated within the same range in parr and smolts. Significant diurnal changes in plasma TH were present in parr. Both FT(4) and TT(4) levels increased during the photophase and decreased during the scotophase, while TT(3) levels followed an inverse pattern. Growth hormone showed no significant changes in parr. Changes in FT(4), TT(4), GH, and cortisol, but not TT(3), levels, were observed in smolts with peak levels during both the photophase and scotophase for FT(4), TT(4) and GH. Plasma cortisol was not assayed in parr but in smolts the peaks were associated with dusk and dawn. In addition to the general increases in TH, GH and cortisol, the distinct endocrine differences in nighttime levels between parr in the winter and smolts in the spring suggest different interactions between TH, GH, cortisol and melatonin at these different time points. These spring scotophase endocrine profiles may represent synergistic hormone interactions that promote smolt development, similar to the synergistic endocrine interactions shown to accelerate anuran metamorphosis. The variations in these diurnal rhythms between parr and smolts may represent part of the endocrine mechanism for the translation of seasonal information during salmon smoltification.
  •  
5.
  • Kling, Peter, 1968, et al. (författare)
  • A homologous salmonid leptin radioimmunoassay indicates elevated plasma leptin levels during fasting of rainbow trout
  • 2009
  • Ingår i: General and Comparative Endocrinology. ; 162:3, s. 307-312
  • Tidskriftsartikel (refereegranskat)abstract
    • The present study was conducted to establish a homologous radioimmunoassay (RIA) for quantifying plasma leptin (Lep) levels in salmonid species, and to study Lep levels in relation to nutritional status. A part of the Lep peptide, a 14 amino acid long sequence, identical between a Salmo and an Oncorhynchus species was synthesised. Polyclonal antibodies were raised in rabbit against this antigen and both were subsequently used in the development of a RIA protocol for assessing plasma Lep levels. The limit of detection of the assay was 0.3 nM, and intra- and interassay coefficient of variation (CV) were 8.4% and 13%, respectively. Apart from Atlantic salmon and rainbow trout, the assay exhibits measuring parallelism for a range of fish species, including arctic char, Atlantic cod and turbot, suggesting that the established RIA is useful for quantifying Lep levels in several fish species. The RIA indicates that Lep is found in salmonid plasma at levels of 0.5–5 nM, which is comparable with other peptide hormones, and well within the measuring range of the RIA. A study of fed and fasted rainbow trout showed elevated plasma Lep levels during fasting. In addition there was no correlation between Lep levels and condition factor. These data suggest that the relation between circulating Lep levels and energy status differs from that in mammals. While Lep is linked to energy balance, it may not act as an adiposity signal in salmonids, possibly pointing to functional divergence among ectothermic and endothermic vertebrates.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy