SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Steffansen Bente) srt2:(2005-2009)"

Sökning: WFRF:(Steffansen Bente) > (2005-2009)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gram, Luise K, et al. (författare)
  • Impact of carriers in oral absorption : Permeation across Caco-2 cells for the organic anions estrone-3-sulfate and glipizide
  • 2009
  • Ingår i: European Journal of Pharmaceutical Sciences. - : Elsevier BV. - 0928-0987 .- 1879-0720. ; 37:3-4, s. 378-386
  • Tidskriftsartikel (refereegranskat)abstract
    • Carriers may mediate the permeation across enterocytes for drug substances being organic anions. Carrier mediated permeation for the organic anions estrone-3-sulfate (ES) and glipizide across Caco-2 cells were investigated kinetically, and interactions on involved carriers evaluated. Initial uptakes (P(UP)) at apical and basolateral membranes, apparent permeabilities (P(APP)) and corresponding intracellular end-point accumulations (P(EPA)) of radioactive labeled compounds were studied. Possible effects of other anionic compounds were investigated. Apical P(UP) and absorptive P(APP) for ES were inhibited and its absorptive P(EPA) prevented in presence of the investigated organic anions and apical P(UP) was saturable with K(m) 23microM. Basolateral P(UP) and exsorptive P(APP) were inhibited, its exsorptive P(EPA) was prevented, and basolateral P(UP) and exsorptive P(APP) were saturable with K(m) 44microM and 38microM, respectively. BCRP inhibition affected both absorptive an exsorptive P(EPA) and P(APP) for ES. Glipizide apical P(UP) and absorptive P(APP) were not inhibitable. Basolateral P(UP) for glipizide was inhibitable, its P(EPA) prevented, and P(UP) was saturable with K(m) 56microM, but exsorptive P(APP) was not affected. Carrier mediated exsorption kinetics for ES are seen at both apical and basolateral membranes, resulting in predominant exsorption despite presence of absorptive carrier(s). Carrier mediated basolateral P(UP) for glipizide was observed, but glipizide P(APP) was not described by carrier kinetics. However, glipizide is affecting exsorption for ES, due to interactions on basolateral carrier. The study confirms that estrone-3-sulfate can be used to characterize anionic carrier kinetics. Furthermore it is suggested that estrone-3-sulfate may be used to identify compounds which may interact on anionic carriers.
  •  
2.
  • Våbenø, Jon, et al. (författare)
  • Conformational restrictions in ligand binding to the human intestinal di-/tripeptide transporter: implications for design of hPEPT1 targeted prodrugs.
  • 2005
  • Ingår i: Bioorganic & medicinal chemistry. - : Elsevier BV. - 0968-0896. ; 13:6, s. 1977-88
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of the present study was to develop a computational method aiding the design of dipeptidomimetic pro-moieties targeting the human intestinal di-/tripeptide transporter hPEPT1. First, the conformation in which substrates bind to hPEPT1 (the bioactive conformation) was identified by conformational analysis and 2D dihedral driving analysis of 15 hPEPT1 substrates, which suggested that psi(1) approximately 165 degrees , omega(1) approximately 180 degrees , and phi(2) approximately 280 degrees were descriptive of the bioactive conformation. Subsequently, the conformational energy required to change the peptide backbone conformation (DeltaE(bbone)) from the global energy minimum conformation to the identified bioactive conformation was calculated for 20 hPEPT1 targeted model prodrugs with known K(i) values. Quantitatively, an inverse linear relationship (r(2)=0.81, q(2)=0.80) was obtained between DeltaE(bbone) and log1/K(i), showing that DeltaE(bbone) contributes significantly to the experimentally observed affinity for hPEPT1 ligands. Qualitatively, the results revealed that compounds classified as high affinity ligands (K(i)<0.5 mM) all have a calculated DeltaE(bbone)<1 kcal/mol, whereas medium and low-affinity compounds (0.5 mM
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy