SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Steinvall Konrad) srt2:(2022)"

Sökning: WFRF:(Steinvall Konrad) > (2022)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dimmock, A. P., et al. (författare)
  • Analysis of multiscale structures at the quasi-perpendicular Venus bow shock Results from Solar Orbiter's first Venus flyby
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 660
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Solar Orbiter is a European Space Agency mission with a suite of in situ and remote sensing instruments to investigate the physical processes across the inner heliosphere. During the mission, the spacecraft is expected to perform multiple Venus gravity assist maneuvers while providing measurements of the Venusian plasma environment. The first of these occurred on 27 December 2020, in which the spacecraft measured the regions such as the distant and near Venus magnetotail, magnetosheath, and bow shock. Aims. This study aims to investigate the outbound Venus bow shock crossing measured by Solar Orbiter during the first flyby. We study the complex features of the bow shock traversal in which multiple large amplitude magnetic field and density structures were observed as well as higher frequency waves. Our aim is to understand the physical mechanisms responsible for these high amplitude structures, characterize the higher frequency waves, determine the source of the waves, and put these results into context with terrestrial bow shock observations. Methods. High cadence magnetic field, electric field, and electron density measurements were employed to characterize the properties of the large amplitude structures and identify the relevant physical process. Minimum variance analysis, theoretical shock descriptions, coherency analysis, and singular value decomposition were used to study the properties of the higher frequency waves to compare and identify the wave mode. Results. The non-planar features of the bow shock are consistent with shock rippling and/or large amplitude whistler waves. Higher frequency waves are identified as whistler-mode waves, but their properties across the shock imply they may be generated by electron beams and temperature anisotropies. Conclusions. The Venus bow shock at a moderately high Mach number (similar to 5) in the quasi-perpendicular regime exhibits complex features similar to the Earth's bow shock at comparable Mach numbers. The study highlights the need to be able to distinguish between large amplitude waves and spatial structures such as shock rippling. The simultaneous high frequency observations also demonstrate the complex nature of energy dissipation at the shock and the important question of understanding cross-scale coupling in these complex regions. These observations will be important to interpreting future planetary missions and additional gravity assist maneuvers.
  •  
2.
  • Lalti, Ahmad, et al. (författare)
  • Whistler Waves in the Foot of Quasi-Perpendicular Supercritical Shocks
  • 2022
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 127:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Whistler waves are thought to play an essential role in the dynamics of collisionless shocks. We use the magnetospheric multiscale spacecraft to study whistler waves around the lower hybrid frequency, upstream of 11 quasi-perpendicular supercritical shocks. We apply the 4-spacecraft timing method to unambiguously determine the wave vector k of whistler waves. We find that the waves are oblique to the background magnetic field with a wave-normal angle between 20 degrees and 42 degrees, and a wavelength of around 100 km, which is close to the ion inertial length. We also find that k is predominantly in the same plane as the magnetic field and the normal to the shock. By combining this precise knowledge of k with high-resolution measurements of the 3D ion velocity distribution, we show that a reflected ion beam is in resonance with the waves, opening up the possibility for wave-particle interaction between the reflected ions and the observed whistlers. The linear stability analysis of a system mimicking the observed distribution suggests that such a system can produce the observed waves.
  •  
3.
  • Liu, Chunxin, 1991-, et al. (författare)
  • Cross-scale Dynamics Driven by Plasma Jet Braking in Space
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 926:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma jets are ubiquitous in space. In geospace, jets can be generated by magnetic reconnection. These reconnection jets, typically at fluid scale, brake in the near-Earth region, dissipate their energies, and drive plasma dynamics at kinetic scales, generating field-aligned currents that are crucial to magnetospheric dynamics. Understanding of the cross-scale dynamics is fundamentally important, but observation of coupling among phenomena at various scales is highly challenging. Here we report, using unprecedentedly high-cadence data from NASA's Magnetospheric Multiscale Mission, the first observation of cross-scale dynamics driven by jet braking in geospace. We find that jet braking causes MHD-scale distortion of magnetic field lines and development of an ion-scale jet front that hosts strong Hall electric fields. Parallel electric fields arising from the ion-scale Hall potential generate intense electron-scale field-aligned currents, which drive strong Debye-scale turbulence. Debye-scale waves conversely limit intensity of the field-aligned currents, thereby coupling back to the large-scale dynamics. Our study can help in understanding how energy deposited in large-scale structures is transferred into small-scale structures in space.
  •  
4.
  • Norgren, C., et al. (författare)
  • Millisecond observations of nonlinear wave-electron interaction in electron phase space holes
  • 2022
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 29:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Electron phase space holes (EHs) associated with electron trapping are commonly observed as bipolar electric field signatures in both space and laboratory plasma. Until recently, it has not been possible to resolve EHs in electron measurements. We report observations of EHs in the plasma sheet boundary layer, here identified as the separatrix region of magnetic reconnection in the magnetotail. The intense EHs are observed together with an electron beam moving toward the X line, showing signs of thermalization. Using the electron drift instrument onboard the satellites of the Magnetospheric Multiscale mission, we make direct millisecond measurements of the electron particle flux associated with individual electron phase space holes. The electron flux is measured at a millisecond cadence in a narrow parallel speed range within that of the trapped electrons. The flux modulations are of order unity and are direct evidence of the strong nonlinear wave-electron interaction that may effectively thermalize beams and contribute to transforming directed drift energy to thermal energy.
  •  
5.
  • Palmerio, Erika, et al. (författare)
  • CMEs and SEPs During November-December 2020 : A Challenge for Real-Time Space Weather Forecasting
  • 2022
  • Ingår i: Space Weather. - : American Geophysical Union (AGU). - 1542-7390. ; 20:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Predictions of coronal mass ejections (CMEs) and solar energetic particles (SEPs) are a central issue in space weather forecasting. In recent years, interest in space weather predictions has expanded to include impacts at other planets beyond Earth as well as spacecraft scattered throughout the heliosphere. In this sense, the scope of space weather science now encompasses the whole heliospheric system, and multipoint measurements of solar transients can provide useful insights and validations for prediction models. In this work, we aim to analyze the whole inner heliospheric context between two eruptive flares that took place in late 2020, that is, the M4.4 flare of 29 November and the C7.4 flare of 7 December. This period is especially interesting because the STEREO-A spacecraft was located similar to 60 degrees east of the Sun-Earth line, giving us the opportunity to test the capabilities of "predictions at 360 degrees" using remote-sensing observations from the Lagrange L1 and L5 points as input. We simulate the CMEs that were ejected during our period of interest and the SEPs accelerated by their shocks using the WSA-Enlil-SEPMOD modeling chain and four sets of input parameters, forming a "mini-ensemble." We validate our results using in situ observations at six locations, including Earth and Mars. We find that, despite some limitations arising from the models' architecture and assumptions, CMEs and shock-accelerated SEPs can be reasonably studied and forecast in real time at least out to several tens of degrees away from the eruption site using the prediction tools employed here.
  •  
6.
  • Steinvall, Konrad (författare)
  • Electrostatic plasma waves associated with collisionless magnetic reconnection : Spacecraft observations
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Magnetic reconnection is a fundamental plasma process where changes in magnetic field topology result in explosive energy conversion, plasma mixing, heating, and energization. In geospace, magnetic reconnection couples the Earth’s magnetosphere to the solar wind plasma, enabling plasma transport across the magnetopause. On the sun, reconnection is responsible for coronal mass ejections and flares, which can affect everyday life on Earth, and it influences the evolution of the solar wind. Although collisionless magnetic reconnection has been studied for a long time, some fundamental aspects of the process remain to be understood. One such aspect is if/how plasma waves affect the process. Simulations and spacecraft observations of magnetic reconnection have shown that plasma waves are ubiquitous during reconnection. Particularly interesting are simulation results which show that electrostatic waves can affect the rate at which reconnection occurs, but this has not yet been experimentally verified. The recently launched Magnetospheric Multiscale (MMS) mission was designed to investigate the smallest scales of collisionless magnetic reconnection, making it an excellent mission to study small-scale waves as well. In this thesis, we use MMS to study electrostatic waves associated with magnetic reconnection in geospace. Our first two studies are devoted to the properties of electron holes (EHs), believed to play an important role in collisionless reconnection. Using MMS, we analyze EHs in unprecedented detail, and compare their properties to theory and previous studies. Importantly, we find evidence of EHs radiating whistler waves in the reconnection separatrices, a process which might modulate the reconnection rate. In our third study, we show that the presence of cold ions at the reconnecting magnetopause can lead to the growth of the ion-acoustic instability. This instability leads to dissipation and cold ion heating. The fourth study compares different techniques for determining the velocity of electrostatic waves. Accurate velocity estimates are important, since they are needed to understand how the wave interacts with the plasma. Finally, in our fifth study, we calibrate the E-field measurements made in the solar wind by the Solar Orbiter spacecraft, to aid future studies of solar wind processes, including magnetic reconnection.
  •  
7.
  • Steinvall, Konrad, et al. (författare)
  • On the Applicability of Single-Spacecraft Interferometry Methods Using Electric Field Probes
  • 2022
  • Ingår i: Journal of Geophysical Research: Space Physics. - : American Geophysical Union (AGU). ; 127:3
  • Tidskriftsartikel (refereegranskat)abstract
    • When analyzing plasma waves, a key parameter to determine is the phase velocity. It enables us to, for example, compute wavelengths, wave potentials, and determine the energy of resonant particles. The phase velocity of a wave, observed by a single spacecraft equipped with electric field probes, can be determined using interferometry techniques. While several methods have been developed to do this, they have not been documented in detail. In this study, we use an analytical model to analyze and compare three interferometry methods applied on the probe geometry of the Magnetospheric Multiscale spacecraft. One method relies on measured probe potentials, whereas the other two use different E-field measurements: one by reconstructing the E-field between two probes and the spacecraft, the other by constructing four pairwise parallel E-field components in the spacecraft spin-plane. We find that the potential method is sensitive both to how planar the wave is, and to spacecraft potential changes due to the wave. The E-field methods are less affected by the spacecraft potential, and while the reconstructed E-field method is applicable in some cases, the second E-field method is almost always preferable. We conclude that the potential based interferometry method is useful when spacecraft potential effects are negligible and the signals of the different probes are very well correlated. The method using two pairs of parallel E-fields is practically always preferable to the reconstructed E-field method and produces the correct velocity in the spin-plane, but it requires knowledge of the propagation direction to provide the full velocity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy