SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stelzer K.) srt2:(2020-2022)"

Sökning: WFRF:(Stelzer K.) > (2020-2022)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Poley, L., et al. (författare)
  • The ABC130 barrel module prototyping programme for the ATLAS strip tracker
  • 2020
  • Ingår i: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221 .- 1748-0221. ; 15:9
  • Tidskriftsartikel (refereegranskat)abstract
    • For the Phase-II Upgrade of the ATLAS Detector [1], its Inner Detector, consisting of silicon pixel, silicon strip and transition radiation sub-detectors, will be replaced with an all new 100% silicon tracker, composed of a pixel tracker at inner radii and a strip tracker at outer radii. The future ATLAS strip tracker will include 11,000 silicon sensor modules in the central region (barrel) and 7,000 modules in the forward region (end-caps), which are foreseen to be constructed over a period of 3.5 years. The construction of each module consists of a series of assembly and quality control steps, which were engineered to be identical for all production sites. In order to develop the tooling and procedures for assembly and testing of these modules, two series of major prototyping programs were conducted: an early program using readout chips designed using a 250 nm fabrication process (ABCN-250) [2, 3] and a subsequent program using a follow-up chip set made using 130 nm processing (ABC130 and HCC130 chips). This second generation of readout chips was used for an extensive prototyping program that produced around 100 barrel-type modules and contributed significantly to the development of the final module layout. This paper gives an overview of the components used in ABC130 barrel modules, their assembly procedure and findings resulting from their tests.
  •  
2.
  • Kraemer, Benjamin M., et al. (författare)
  • Climate change drives widespread shifts in lake thermal habitat
  • 2021
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 11:6, s. 521-529
  • Tidskriftsartikel (refereegranskat)abstract
    • Lake surfaces are warming worldwide, raising concerns about lake organism responses to thermal habitat changes. Species may cope with temperature increases by shifting their seasonality or their depth to track suitable thermal habitats, but these responses may be constrained by ecological interactions, life histories or limiting resources. Here we use 32 million temperature measurements from 139 lakes to quantify thermal habitat change (percentage of non-overlap) and assess how this change is exacerbated by potential habitat constraints. Long-term temperature change resulted in an average 6.2% non-overlap between thermal habitats in baseline (1978-1995) and recent (1996-2013) time periods, with non-overlap increasing to 19.4% on average when habitats were restricted by season and depth. Tropical lakes exhibited substantially higher thermal non-overlap compared with lakes at other latitudes. Lakes with high thermal habitat change coincided with those having numerous endemic species, suggesting that conservation actions should consider thermal habitat change to preserve lake biodiversity. Using measurements from 139 global lakes, the authors demonstrate how long-term thermal habitat change in lakes is exacerbated by species' seasonal and depth-related constraints. They further reveal higher change in tropical lakes, and those with high biodiversity and endemism.
  •  
3.
  • Mesman, Jorrit P., 1993-, et al. (författare)
  • Drivers of phytoplankton responses to summer wind events in a stratified lake : a modelling study
  • 2022
  • Ingår i: Limnology and Oceanography. - : John Wiley & Sons. - 0024-3590 .- 1939-5590. ; 67:4, s. 856-873
  • Tidskriftsartikel (refereegranskat)abstract
    • Extreme wind events affect lake phytoplankton amongst others by deepening the mixed layer and increasing internal nutrient loading. Both increases and decreases of phytoplankton biomass after storms have been observed, but the precise mechanisms driving these responses remain poorly understood or quantified. In this study, we coupled a one-dimensional physical model to a biogeochemical model to investigate the factors regulating short-term phytoplankton responses to summer storms, now and under expected warmer future conditions. We simulated physical, chemical and biological dynamics in Lake Erken, Sweden, and found that wind storms could increase or decrease the phytoplankton concentration one week after the storm, depending on antecedent lake physical and chemical conditions. Storms had little effect on phytoplankton biomass if the mixed layer was deep prior to storm exposure. Higher incoming shortwave radiation and hypolimnetic nutrient concentration boosted growth, whereas higher surface water temperatures decreased phytoplankton concentration after storms. Medium-intensity wind speeds resulted in more phytoplankton biomass after storms than high-intensity wind. Simulations under a future climate scenario did not show marked differences in the way wind affects phytoplankton growth following storms. Our study shows that storm impacts on lake phytoplankton are complex and likely to vary as a function of local environmental conditions.
  •  
4.
  • Olin, JW, et al. (författare)
  • A plasma proteogenomic signature for fibromuscular dysplasia
  • 2020
  • Ingår i: Cardiovascular research. - : Oxford University Press (OUP). - 1755-3245 .- 0008-6363. ; 116:1, s. 63-77
  • Tidskriftsartikel (refereegranskat)abstract
    • AimsFibromuscular dysplasia (FMD) is a poorly understood disease that predominantly affects women during middle-life, with features that include stenosis, aneurysm, and dissection of medium-large arteries. Recently, plasma proteomics has emerged as an important means to understand cardiovascular diseases. Our objectives were: (i) to characterize plasma proteins and determine if any exhibit differential abundance in FMD subjects vs. matched healthy controls and (ii) to leverage these protein data to conduct systems analyses to provide biologic insights on FMD, and explore if this could be developed into a blood-based FMD test.Methods and resultsFemales with ‘multifocal’ FMD and matched healthy controls underwent clinical phenotyping, dermal biopsy, and blood draw. Using dual-capture proximity extension assay and nuclear magnetic resonance-spectroscopy, we evaluated plasma levels of 981 proteins and 31 lipid sub-classes, respectively. In a discovery cohort (Ncases = 90, Ncontrols = 100), we identified 105 proteins and 16 lipid sub-classes (predominantly triglycerides and fatty acids) with differential plasma abundance in FMD cases vs. controls. In an independent cohort (Ncases = 23, Ncontrols = 28), we successfully validated 37 plasma proteins and 10 lipid sub-classes with differential abundance. Among these, 5/37 proteins exhibited genetic control and Bayesian analyses identified 3 of these as potential upstream drivers of FMD. In a 3rd cohort (Ncases = 506, Ncontrols = 876) the genetic locus of one of these upstream disease drivers, CD2-associated protein (CD2AP), was independently validated as being associated with risk of having FMD (odds ratios  = 1.36; P = 0.0003). Immune-fluorescence staining identified that CD2AP is expressed by the endothelium of medium-large arteries. Finally, machine learning trained on the discovery cohort was used to develop a test for FMD. When independently applied to the validation cohort, the test showed a c-statistic of 0.73 and sensitivity of 78.3%.ConclusionFMD exhibits a plasma proteogenomic and lipid signature that includes potential causative disease drivers, and which holds promise for developing a blood-based test for this disease.
  •  
5.
  • Pahlevan, Nima, et al. (författare)
  • ACIX-Aqua : A global assessment of atmospheric correction methods for Landsat-8 and Sentinel-2 over lakes, rivers, and coastal waters
  • 2021
  • Ingår i: Remote Sensing of Environment. - : Elsevier BV. - 0034-4257 .- 1879-0704. ; 258
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric correction over inland and coastal waters is one of the major remaining challenges in aquatic remote sensing, often hindering the quantitative retrieval of biogeochemical variables and analysis of their spatial and temporal variability within aquatic environments. The Atmospheric Correction Intercomparison Exercise (ACIX-Aqua), a joint NASA - ESA activity, was initiated to enable a thorough evaluation of eight state-of-the-art atmospheric correction (AC) processors available for Landsat-8 and Sentinel-2 data processing. Over 1000 radiometric matchups from both freshwaters (rivers, lakes, reservoirs) and coastal waters were utilized to examine the quality of derived aquatic reflectances ((rho) over cap (w)). This dataset originated from two sources: Data gathered from the international scientific community (henceforth called Community Validation Database, CVD), which captured predominantly inland water observations, and the Ocean Color component of AERONET measurements (AERONET-OC), representing primarily coastal ocean environments. This volume of data permitted the evaluation of the AC processors individually (using all the matchups) and comparatively (across seven different Optical Water Types, OWTs) using common matchups. We found that the performance of the AC processors differed for CVD and AERONET-OC matchups, likely reflecting inherent variability in aquatic and atmospheric properties between the two datasets. For the former, the median errors in (rho) over cap (w)(560) and (rho) over cap (w)(664) were found to range from 20 to 30% for best-performing processors. Using the AERONET-OC matchups, our performance assessments showed that median errors within the 15-30% range in these spectral bands may be achieved. The largest uncertainties were associated with the blue bands (25 to 60%) for best-performing processors considering both CVD and AERONET-OC assessments. We further assessed uncertainty propagation to the downstream products such as near-surface concentration of chlorophyll-a (Chla) and Total Suspended Solids (TSS). Using satellite matchups from the CVD along with in situ Chla and TSS, we found that 20-30% uncertainties in (rho) over cap (w)(490 <= lambda <= 743 nm) yielded 25-70% uncertainties in derived Chla and TSS products for top-performing AC processors. We summarize our results using performance matrices guiding the satellite user community through the OWT-specific relative performance of AC processors. Our analysis stresses the need for better representation of aerosols, particularly absorbing ones, and improvements in corrections for sky- (or sun-) glint and adjacency effects, in order to achieve higher quality downstream products in freshwater and coastal ecosystems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy