SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stempels Eric) srt2:(2010-2014)"

Sökning: WFRF:(Stempels Eric) > (2010-2014)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bedding, Timothy R., et al. (författare)
  • A multi-site campaign to measure solar-like oscillations in Procyon. II. mode frequencies
  • 2010
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 713:2, s. 935-949
  • Tidskriftsartikel (refereegranskat)abstract
    • We have analyzed data from a multi-site campaign to observe oscillations in the F5 star Procyon. The data consist of high-precision velocities that we obtained over more than three weeks with 11 telescopes. A new method for adjusting the data weights allows us to suppress the sidelobes in the power spectrum. Stacking the power spectrum in a so-called echelle diagram reveals two clear ridges, which we identify with even and odd values of the angular degree (l = 0 and 2, and l = 1 and 3, respectively). We interpret a strong, narrow peak at 446 mu Hz that lies close to the l = 1 ridge as a mode with mixed character. We show that the frequencies of the ridge centroids and their separations are useful diagnostics for asteroseismology. In particular, variations in the large separation appear to indicate a glitch in the sound-speed profile at an acoustic depth of similar to 1000 s. We list frequencies for 55 modes extracted from the data spanning 20 radial orders, a range comparable to the best solar data, which will provide valuable constraints for theoretical models. A preliminary comparison with published models shows that the offset between observed and calculated frequencies for the radial modes is very different for Procyon than for the Sun and other cool stars. We find the mean lifetime of the modes in Procyon to be 1.29(-0.49)(+0.55) days, which is significantly shorter than the 2-4 days seen in the Sun.
  •  
2.
  • Cataldi, Gianni, 1986- (författare)
  • Debris disks from an astronomical and an astrobiological viewpoint
  • 2013
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this licentiate thesis, I consider debris disks from an observational, astronomical viewpoint, but also discuss a potential astrobiological application. Debris disks are essentially disks of dust and rocks around main-sequence stars, analogue to the Kuiper- or the asteroid belt in our solar system. Their observation and theoretical modeling can help to constrain planet formation models and help in the understanding of the history of the solar system. After a general introduction into the field of debris disks and some basic debris disk physics, the thesis concentrates on the observation of gas in debris disks. The possible origins of this gas and its dynamics are discussed and it is considered what it can tell us about the physical conditions in the disk and possibly about the dust composition. In this way, the paper associated with this thesis (dealing with the gas in the β Pic debris disk) is set into context. More in detail, we observed the CII emission originating from the carbon-rich β Pic disk with Herschel HIFI and attempted to constrain the spatial distribution of the gas from the shape of the emission line. This is necessary since the gas production mechanism is currently unknown, but can be constraint by obtaining information about the spatial profile of the gas. The last part of the thesis describes our preliminary studies of the possibility of a debris disk containing biomarkers, created by a giant impact on a life-bearing exoplanet.
  •  
3.
  • Chew, Yilen Gomez Maqueo, et al. (författare)
  • Luminosity Discrepancy in the Equal-Mass, Pre-Main-Sequence Eclipsing Binary Par 1802 : Non-Coevality or Tidal Heating?
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 745:1, s. 58-
  • Tidskriftsartikel (refereegranskat)abstract
    • Parenago 1802, a member of the similar to 1 Myr Orion Nebula Cluster, is a double-lined, detached eclipsing binary in a 4.674 day orbit, with equal-mass components (M-2/M-1 = 0.985 +/- 0.029). Here we present extensive VI(C)JHK(S) light curves (LCs) spanning similar to 15 yr, as well as a Keck/High Resolution Echelle Spectrometer (HIRES) optical spectrum. The LCs evince a third light source that is variable with a period of 0.73 days, and is also manifested in the high-resolution spectrum, strongly indicating the presence of a third star in the system, probably a rapidly rotating Classical T Tauri star. We incorporate this third light into our radial velocity and LC modeling of the eclipsing pair, measuring accurate masses (M-1 = 0.391 +/- 0.032 and M-2 = 0.385 +/- 0.032 M-circle dot), radii (R-1 = 1.73 +/- 0.02 and R-2 = 1.62 +/- 0.02 R-circle dot), and temperature ratio (T-eff,T-1/T-eff,T-2 = 1.0924 +/- 0.0017). Thus, the radii of the eclipsing stars differ by 6.9% +/- 0.8%, the temperatures differ by 9.2% +/- 0.2%, and consequently the luminosities differ by 62% +/- 3%, despite having masses equal to within 3%. This could be indicative of an age difference of similar to 3 x 10(5) yr between the two eclipsing stars, perhaps a vestige of the binary formation history. We find that the eclipsing pair is in an orbit that has not yet fully circularized, e = 0.0166 +/- 0.003. In addition, we measure the rotation rate of the eclipsing stars to be 4.629 +/- 0.006 days; they rotate slightly faster than their 4.674 day orbit. The non-zero eccentricity and super-synchronous rotation suggest that the eclipsing pair should be tidally interacting, so we calculate the tidal history of the system according to different tidal evolution theories. We find that tidal heating effects can explain the observed luminosity difference of the eclipsing pair, providing an alternative to the previously suggested age difference.
  •  
4.
  • Follert, R., et al. (författare)
  • CRIRES plus : a cross-dispersed high-resolution infrared spectrograph for the ESO VLT
  • 2014
  • Ingår i: GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY V. - : SPIE. - 9780819496157
  • Konferensbidrag (refereegranskat)abstract
    • High-resolution infrared spectroscopy plays an important role in astrophysics from the search for exoplanets to cosmology. Yet, many existing infrared spectrographs are limited by a rather small simultaneous wavelength coverage. The AO assisted CRIRES instrument, installed at the ESO VLT on Paranal, is one of the few IR (0.92-5.2 mu m) high-resolution spectrographs in operation since 2006. However it has a limitation that hampers its efficient use: the wavelength range covered in a single exposure is limited to similar to 15 nanometers. The CRIRES Upgrade project (CRIRES+) will transform CRIRES into a cross-dispersed spectrograph and will also add new capabilities. By introducing cross-dispersion elements the simultaneously covered wavelength range will be increased by at least a factor of 10 with respect to the present configuration, while the operational wavelength range will be preserved. For advanced wavelength calibration, new custom made absorption gas cells and etalons will be added. A spectro-polarimetric unit will allow one for the first time to record circularly polarized spectra at the highest spectral resolution. This will be all supported by a new data reduction software which will allow the community to take full advantage of the new capabilities of CRIRES+.
  •  
5.
  • Johns-Krull, Christopher M., et al. (författare)
  • Magnetically Controlled Accretion on the Classical T Tauri Stars GQ Lupi and TW Hydrae
  • 2013
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 765:1, s. 11-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present high spectral resolution (R approximate to 108,000) Stokes V polarimetry of the classical T Tauri stars (CTTSs) GQ Lup and TW Hya obtained with the polarimetric upgrade to the HARPS spectrometer on the ESO 3.6 m telescope. We present data on both photospheric lines and emission lines, concentrating our discussion on the polarization properties of the He I emission lines at 5876 angstrom and 6678 angstrom. The He I lines in these CTTSs contain both narrow emission cores, believed to come from near the accretion shock region on these stars, and broad emission components which may come from either a wind or the large-scale magnetospheric accretion flow. We detect strong polarization in the narrow component of the two He I emission lines in both stars. We observe a maximum implied field strength of 6.05 +/- 0.24 kG in the 5876 angstrom line of GQ Lup, making it the star with the highest field strength measured in this line for a CTTS. We find field strengths in the two He I lines that are consistent with each other, in contrast to what has been reported in the literature on at least one star. We do not detect any polarization in the broad component of the He I lines on these stars, strengthening the conclusion that they form over a substantially different volume relative to the formation region of the narrow component of the He I lines.
  •  
6.
  • Lizon, Jean Louis, et al. (författare)
  • Opto-mechanical design of a new Cross Dispersion Unit for the CRIRES plus high resolution spectrograph for the VLT
  • 2014
  • Ingår i: GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY V. - : SPIE. - 9780819496157
  • Konferensbidrag (refereegranskat)abstract
    • CRIRES is one of the few IR (0.92-5.2 mu m) high-resolution spectrographs in operation at the VLT since 2006. Despite good performance it suffers a limitation that significantly hampers its ability: a small spectral coverage per exposure. The CRIRES upgrade (CRIRES+) proposes to transform CRIRES into a cross-dispersed spectrograph while maintaining the high resolution (100000) and increasing the wavelength coverage by a factor 10 compared to the current capabilities. A major part of the upgrade is the exchange of the actual cryogenic pre-disperser module by a new cross disperser unit. In addition to a completely new optical design, a number of important changes are required on key components and functions like the slit unit and detectors units. We will outline the design of these new units fitting inside a predefined and restricted space. The mechanical design of the new functions including a description and analysis will be presented. Finally we will present the strategy for the implementation of the changes.
  •  
7.
  • Lockhart, Matthew, et al. (författare)
  • Novel infrared polarimeter for the ESO CRIRES plus instrument
  • 2014
  • Ingår i: GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY V. - : SPIE. - 9780819496157
  • Konferensbidrag (refereegranskat)abstract
    • The CRIRES infrared spectrograph at the European Southern Observatory (ESO) Very Large Telescope (VLT) facility will soon receive an upgrade. This upgrade will include the addition of a module for performing high-resolution spectropolarimetry. The polarimetry module will incorporate a novel infrared beamsplitter based on polarization gratings (PGs). The beamsplitter produces a pair of infrared output beams, with opposite circular polarizations, which are then fed into the spectrograph. Visible light passes through the module virtually unaltered and is then available for use by the CRIRES adaptive optics system. We present the design of the polarimetry module and measurements of PG behavior in the 1 to 2.7 mu m wavelength range.
  •  
8.
  • Oliva, E., et al. (författare)
  • Concept and optical design of the cross-disperser module for CRIRES
  • 2014
  • Ingår i: GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY V. - : SPIE. - 9780819496157
  • Konferensbidrag (refereegranskat)abstract
    • CRIRES, the ESO high resolution infrared spectrometer, is a unique instrument which allows astronomers to access a parameter space which up to now was largely uncharted. In its current setup, it consists of a single-order spectrograph providing long-slit, single-order spectroscopy with resolving power up to R=100,000 over a quite narrow spectral range. This has resulted in sub-optimal efficiency and use of telescope time for all the scientific programs requiring broad spectral coverage of compact objects (e.g. chemical abundances of stars and intergalactic medium, search and characterization of extra-solar planets). To overcome these limitations, a consortium was set-up for upgrading CRIRES to a cross-dispersed spectrometer, called CRIRES+. This paper presents the updated optical design of the cross-dispersion module for CRIRES+. This new module can be mounted in place of the current pre-disperser unit. The new system yields a factor of >10 increase in simultaneous spectral coverage and maintains a quite long slit (10"), ideal for observations of extended sources and for precise sky-background subtraction.
  •  
9.
  • Piskunov, Nikolai, et al. (författare)
  • HARPSpol - The New Polarimetric Mode for HARPS
  • 2011
  • Ingår i: The Messenger. ; 143, s. 7-10
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The HARPS spectrograph can now perform a full polarisation analysis of spectra. It has been equipped with a polarimetric unit, HARPSpol, which was jointly designed and produced by Uppsala, Utrecht and Rice Universities and by the STScI. Here we present the new instrument, demonstrate its polarisation capabilities and show the first scientific results.
  •  
10.
  • Rusomarov, Naum, et al. (författare)
  • Three-dimensional magnetic and abundance mapping of the cool Ap star HD 24712 : I. Spectropolarimetric observations in all four Stokes parameters
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 558, s. A8-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. High-resolution spectropolarimetric observations provide simultaneous information about stellar magnetic field topologies and three-dimensional distributions of chemical elements. High-quality spectra in the Stokes IQUV parameters are currently available for very few early-type magnetic chemically peculiar stars. Here we present analysis of a unique full Stokes vector spectropolarimetric data set, acquired for the cool magnetic Ap star HD 24712 with a recently commissioned spectropolarimeter. Aims. The goal of our work is to examine the circular and linear polarization signatures inside spectral lines and to study variation of the stellar spectrum and magnetic observables as a function of rotational phase. Methods. HD 24712 was observed with the HARPSpol instrument at the 3.6-m ESO telescope over a period of 2010-2011. We achieved full rotational phase coverage with 43 individual Stokes parameter observations. The resulting spectra have a signal-to-noise ratio of 300600 and resolving power exceeding 10(5). The multiline technique of least-squares deconvolution (LSD) was applied to combine information from the spectral lines of Fe-peak and rare earth elements. Results. We used the HARPSPol spectra of HD 24712 to study the morphology of the Stokes profile shapes in individual spectral lines and in LSD Stokes profiles corresponding to different line masks. From the LSD Stokes V profiles we measured the longitudinal component of the magnetic field, < Bz >, with an accuracy of 510 G. We also determined the net linear polarization from the LSD Stokes Q and U profiles. Combining previous < Bz > measurements with our data allowed us to determine an improved rotational period of the star, P-rot = 12.45812 +/- 0.00019 d. We also measured the longitudinal magnetic field from the cores of H alpha and H beta lines. The analysis of < Bz > measurements showed no evidence for a significant radial magnetic field gradient in the atmosphere of HD 24712. We used our < Bz > and net linear polarization measurements to determine parameters of the dipolar magnetic field topology. We found that magnetic observables can be reasonably well reproduced by the dipolar model, although significant discrepancies remain at certain rotational phases. We discovered rotational modulation of the H alpha core and related it to a non-uniform surface distribution of rare earth elements.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy