SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stenberg Wieser G.) srt2:(2018)"

Sökning: WFRF:(Stenberg Wieser G.) > (2018)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Behar, Etienne, et al. (författare)
  • The root of a comet tail : Rosetta ion observations at comet 67P/Churyumov–Gerasimenko
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 616
  • Tidskriftsartikel (refereegranskat)abstract
    • Context.The first 1000 km of the ion tail of comet 67P/Churyumov–Gerasimenko were explored by the EuropeanRosettaspacecraft,2.7 au away from the Sun.Aims.We characterised the dynamics of both the solar wind and the cometary ions on the night-side of the comet’s atmosphere.Methods.We analysed in situ ion and magnetic field measurements and compared the data to a semi-analytical model.Results.The cometary ions are observed flowing close to radially away from the nucleus during the entire excursion. The solar windis deflected by its interaction with the new-born cometary ions. Two concentric regions appear, an inner region dominated by theexpanding cometary ions and an outer region dominated by the solar wind particles.Conclusions.The single night-side excursion operated byRosettarevealed that the near radial flow of the cometary ions can beexplained by the combined action of three different electric field components, resulting from the ion motion, the electron pressuregradients, and the magnetic field draping. The observed solar wind deflection is governed mostly by the motional electric field−uion×B.
  •  
2.
  • Berecic, Laura, et al. (författare)
  • Cometary ion dynamics observed in the close vicinity of comet 67P/Churyumov-Gerasimenko during the intermediate activity period
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 613, s. 1-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims.Cometary ions are constantly produced in the coma, and once produced they are accelerated and eventually escape the coma.We describe and interpret the dynamics of the cometary ion flow, of an intermediate active comet, very close to the nucleus and in theterminator plane.Methods.We analysed in situ ion and magnetic field measurements, and characterise the velocity distribution functions (mostly usingplasma moments). We propose a statistical approach over a period of one month.Results.On average, two populations were observed, separated in phase space. The motion of the first is governed by its interactionwith the solar wind farther upstream, while the second one is accelerated in the inner coma and displays characteristics compatiblewith an ambipolar electric field. Both populations display a consistent anti-sunward velocity component.Conclusions.Cometary ions born in different regions of the coma are seen close to the nucleus of comet 67P/Churyumov–Gerasimenko with distinct motions governed in one case by the solar wind electric field and in the other case by the position relative tothe nucleus. A consistent anti-sunward component is observed for all cometary ions. An asymmetry is found in the average cometaryion density in a solar wind electric field reference frame, with higher density in the negative (south) electric field hemisphere. Thereis no corresponding signature in the average magnetic field strengt
  •  
3.
  • Engelhardt, Ilka. A. D., et al. (författare)
  • Plasma Density Structures at Comet 67P/Churyumov-Gerasimenko
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 477:1, s. 1296-1307
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Rosetta RPC case study from four events at various radial distance, phase angle and local time from autumn 2015, just after perihelion of comet 67P/Churyumov-Gerasimenko. Pulse like (high amplitude, up to minutes in time) signatures are seen with several RPC instruments in the plasma density (LAP, MIP), ion energy and flux (ICA) as well as magnetic field intensity (MAG). Furthermore the cometocentric distance relative to the electron exobase is seen to be a good organizing parameter for the measured plasma variations. The closer Rosetta is to this boundary, the more pulses are measured. This is consistent with the pulses being filaments of plasma originating from the diamagnetic cavity boundary as predicted by simulations. 
  •  
4.
  • Nilsson, Hans, et al. (författare)
  • Size of a plasma cloud matters The polarisation electric field of a small-scale comet ionosphere
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 616
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The cometary ionosphere is immersed in fast flowing solar wind. A polarisation electric field may arise for comets much smaller than the gyroradius of pickup ions because ions and electrons respond differently to the solar wind electric field. Aims. A situation similar to that found at a low activity comet has been modelled for barium releases in the Earth's ionosphere. We aim to use such a model and apply it to the case of comet 67P Churyumov-Gerasimenko, the target of the Rosetta mission. We aim to explain the significant tailward acceleration of cometary ions through the modelled electric field. Methods. We obtained analytical solutions for the polarisation electric field of the comet ionosphere using a simplified geometry. This geometry is applicable to the comet in the inner part of the coma as the plasma density integrated along the magnetic field line remains rather constant. We studied the range of parameters for which a significant tailward electric field is obtained and compare this with the parameter range observed. Results. Observations of the local plasma density and magnetic field strength show that the parameter range of the observations agree very well with a significant polarisation electric field shielding the inner part of the coma from the solar wind electric field. Conclusions. The same process gives rise to a tailward directed electric field with a strength of the order of 10% of the solar wind electric field. Using a simple cloud model we have shown that the polarisation electric field, which arises because of the small size of the comet ionosphere as compared to the pick up ion gyroradius, can explain the observed significant tailward acceleration of cometary ions and is consistent with the observed lack of influence of the solar wind electric field in the inner coma.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy