SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stephan Pomp) srt2:(2020-2024)"

Sökning: WFRF:(Stephan Pomp) > (2020-2024)

  • Resultat 1-10 av 38
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gomez L, Ana Maria, 1993-, et al. (författare)
  • Determination of the Plasma Delay Time in PIPS detectors for fission fragments at the LOHENGRIN spectrometer
  • 2023
  • Ingår i: 15<sup>th</sup> International Conference on Nuclear Data for Science and Technology (ND2022). - : EDP Sciences.
  • Konferensbidrag (refereegranskat)abstract
    • The VElocity foR Direct particle Identification spectrometer (VERDI) is a 2E-2v fission spectrometer that allows the measurement of the total mass distribution of secondary fission fragments with a resolving power of 1-2 u. It consists of two time-of-flight (ToF) arms, with one Micro Channel Plate (MCP) detector and up to 32 Silicon PIPS (Passive Implanted Planar Silicon) detectors per arm. The MCPs provide the start timing signals and the PIPS detectors provide both the energy and the stopping ToF signals. In real conditions, the PIPS signals are affected by the formation of plasma from the interaction between the heavy ions and the detector material. The plasma contributes to a reduction in signal amplitude, resulting in a Pulse Height Defect (PHD), and introduces a signal delay, known as Plasma Delay Time (PDT). An experiment to characterize the PDT and PHD was performed at the LOHENGRIN recoil separator of the Institut Laue Langevin (ILL). Characteristic fission fragments from the 239Pu(n,f) reaction were separated based on their A/Q and E/Q ratios, allowing the measurement of a wide range of energies from 21 to 110 MeV and masses between 80 and 149 u. Six PIPS detectors were characterized to study their individual responses to the PDT and PHD effects. The signals were recorded in a digital acquisition system to completely exploit the offline analysis capabilities. Achieved combined timing and energy resolutions for fission fragments varied between 72(2) ps and 100(4) ps and 1.4% - 2% (FWHM), respectively. Preliminary PHD and PDT data are presented from the masses A=85, 95, 130 and 143. The PHD trends are strongly correlated with both the ion energy and mass. The PDT, on the other hand, shows a strong variation as a function of the ion kinetic energy but a smaller dependence on the ion mass.
  •  
2.
  • Al-Adili, Ali, et al. (författare)
  • Isomer yields in nuclear fission
  • 2021
  • Ingår i: EPJ Web of Conferences. - : EDP Sciences. - 2100-014X. ; 256
  • Tidskriftsartikel (refereegranskat)abstract
    • The generation of angular momentum in the fission process is still an open question. To shed light on this topic, we started a series of measurements at the IGISOL-JYFLTRAP facility in Finland. Highprecision measurements of isomeric yield ratios (IYR) are performed with a Penning trap, partly with the aim to extract average root-mean-square (rms) quantities of fragment spin distributions. The newly installed Phase-Imaging Ion-Cyclotron Resonance (PI-ICR) technique allows the separation of masses down to tens of keV, which is suffcient to disentangle many isomers. In this paper, we first summarize the previous measurements on the neutron and proton-induced fission of uranium and thorium, e.g. the odd cadmium and indium isotopes (119 ≤ A ≤ 127). The measurements revealed systematic trends as function of mass number, which stimulated further exploration. A recent measurement was performed at IGISIOL and several new IYR data will soon be published, for the first time. Secondly, we employ the TALYS nuclear-reaction code to model one of the newly measured isomer yields. Detailed GEF and TALYS calculations are discussed for the fragment angular momentum distribution in 134I.
  •  
3.
  • Al-Adili, Ali, et al. (författare)
  • Prompt fission neutron yields in thermal fission of U-235 and spontaneous fission of Cf-252
  • 2020
  • Ingår i: Physical Review C. - : American Physical Society (APS). - 2469-9985 .- 2469-9993. ; 102:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The sharing of excitation energy between the fission fragments is one of the key issues in studying nuclear fission. One way to address this is by studying prompt-fission neutron multiplicities as a function of other fission observables such as the mass, (nu) over bar (A). These are vital benchmark data for both fission and nuclear deexcitation models, putting constrains on the fragment excitation energy and hence on the competing prompt neutron/gamma-ray emission. Despite numerous detailed studies, recent measurements done at JRC-Geel with the SCINTIA array in the epithermal region show surprisingly strong discrepancies to earlier thermal fission data and the Wahl systematics. Purpose: The purpose was to perform measurements of the prompt-fission neutron multiplicity, as a function of fragment mass and total kinetic energy (TKE), in U-235(n(th), f) and Cf-252(sf), to verify and extend the SCINTIA results. Another goal was to validate the analysis methods, and prepare for planned investigations at excitation energies up to 5.5 MeV. Methods: The experiments were conducted at the former 7 MV Van de Graaff facility in JRC-Geel, using a Twin Frisch-Grid Ionization Chamber and two liquid scintillation detectors. A neutron beam with an average energy of 0.5 MeV was produced via the Li-7(p,n) reaction. The neutrons were thermalized by a 12 cm thick block of paraffin. Digital data acquisition systems were utilized. Comprehensive simulations were performed to verify the methodology and to investigate the role of the mass and energy resolution on measured (nu) over bar (A) and (nu) over bar (TKE) values. The simulation results also revealed that the partial derivative(nu) over bar/partial derivative A and partial derivative(TKE) over bar/partial derivative(nu) over bar are affected by the mass and energy resolution. However, the effect is small for the estimated resolutions of this work. Detailed Fluka simulations were performed to calculate the fraction of thermal neutron-induced fission, which was estimated to be about 98%. Results: The experimental results on (nu) over bar (A) are in good agreement with earlier data for Cf-252(sf). For U-235(n(th), f), the (nu) over bar (A) data is very similar to the data obtained with SCINTIA, and therefore we verify these disclosed discrepancies to earlier thermal data and to the Wahl evaluation. The experimental results on (nu) over bar (TKE) are also in agreement with the data at epithermal energies. For Cf-252(sf) a slope value of partial derivative(TKE) over bar/partial derivative(nu) over bar = (-12.9 f 0.2) MeV/n was obtained. For U-235(n(th), f) the value is (-12.0 +/- 0.1) MeV/n. Finally, the neutron spectrum in the center-of-mass system was derived and plotted as a function of fragment mass. Conclusions: This work clearly proves the lack of accurate correlation between fission fragment and neutron data even in the best-studied reactions. The new results highlight the need of a new evaluation of the prompt-fission multiplicity for U-225(n(th), f).
  •  
4.
  • Alcayne, V., et al. (författare)
  • A segmented total energy detector (sTED) for (n, gamma) cross section measurements at n_TOF EAR2
  • 2023
  • Ingår i: 15TH INTERNATIONAL CONFERENCE ON NUCLEAR DATA FOR SCIENCE AND TECHNOLOGY, ND2022. - : EDP Sciences.
  • Konferensbidrag (refereegranskat)abstract
    • The neutron time-of-flight facility n_TOF is characterised by its high instantaneous neutron intensity, high resolution and broad neutron energy spectra, specially conceived for neutron-induced reaction cross section measurements. Two Time-Of-Flight (TOR) experimental areas are available at the facility: experimental area 1 (EAR1), located at the end of the 185 m horizontal flight path from the spallation target, and experimental area 2 (EAR2), placed at 20 m from the target in the vertical direction. The neutron fluence in EAR2 is similar to 300 times more intense than in EARL in the relevant time-of-flight window. EAR2 was designed to carry out challenging cross-section measurements with low mass samples (approximately 1 mg), reactions with small cross-sections or/and highly radioactive samples. The high instantaneous fluence of EAR2 results in high counting rates that challenge the existing capture systems. Therefore, the sTED detector has been designed to mitigate these effects. In 2021, a dedicated campaign was done validating the performance of the detector up to at least 300 keV neutron energy. After this campaign, the detector has been used to perform various capture cross section measurements at n_TOF EAR2.
  •  
5.
  • Alcayne, V., et al. (författare)
  • A Segmented Total Energy Detector (sTED) optimized for (n,ϒ) cross-section measurements at n_TOF EAR2
  • 2024
  • Ingår i: Radiation Physics and Chemistry. - : Elsevier. - 0969-806X .- 1879-0895. ; 217
  • Tidskriftsartikel (refereegranskat)abstract
    • The neutron time-of-flight facility n_TOF at CERN is a spallation source dedicated to measurements of neutroninduced reaction cross-sections of interest in nuclear technologies, astrophysics, and other applications. Since 2014, Experimental ARea 2 (EAR2) is operational and delivers a neutron fluence of similar to 4 center dot 10(7) neutrons per nominal proton pulse, which is similar to 50 times higher than the one of Experimental ARea 1 (EAR1) of similar to 8 center dot 10(5) neutrons per pulse. The high neutron flux at EAR2 results in high counting rates in the detectors that challenged the previously existing capture detection systems. For this reason, a Segmented Total Energy Detector (sTED) has been developed to overcome the limitations in the detector's response, by reducing the active volume per module and by using a photo-multiplier (PMT) optimized for high counting rates. This paper presents the main characteristics of the sTED, including energy and time resolution, response to gamma-rays, and provides as well details of the use of the Pulse Height Weighting Technique (PHWT) with this detector. The sTED has been validated to perform neutron-capture cross-section measurements in EAR2 in the neutron energy range from thermal up to at least 400 keV. The detector has already been successfully used in several measurements at n_TOF EAR2.
  •  
6.
  • Balibrea-Correa, J., et al. (författare)
  • First measurement of the 94Nb(n,γ) cross section at the CERN n_TOF facility
  • 2023
  • Ingår i: EPJ Web of Conferences. - : EDP Sciences. - 2100-014X. ; 279
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the crucial ingredients for the improvement of stellar models is the accurate knowledge of neutron capture cross-sections for the different isotopes involved in the s-,r- and i- processes. These measurements can shed light on existing discrepancies between observed and predicted isotopic abundances and help to constrain the physical conditions where these reactions take place along different stages of stellar evolution.In the particular case of the radioactive 94Nb, the 94Nb(n,γ) cross-section could play a role in the determination of the s-process production of 94Mo in AGB stars, which presently cannot be reproduced by state-of-the-art stellar models. There are no previous 94Nb(n,γ) experimental data for the resolved and unresolved resonance regions mainly due to the difficulties in producing highquality samples and also due to limitations in conventional detection systems commonly used in time-of-flight experiments.Motivated by this situation, a first measurement of the 94Nb(n,γ) reaction was carried out at CERN n_TOF, thereby exploiting the high luminosity of the EAR2 area in combination with a new detection system of small-volume C6D6-detectors and a high quality 94Nb-sample. The latter was based on hyper-pure 93Nb material activated at the high-flux reactor of ILL-Grenoble. An innovative ring-configuration detection system in close geometry around the capture sample allowed us to significantly enhance the signal-to-background ratio. This set-up was supplemented with two conventional C6D6-detectors and a highresolution LaCl3(Ce)-detector, which will be employed for addressing reliably systematic effects and uncertainties.At the current status of the data analysis, 18 resonance in 94Nb+n have been observed for the first time in the neutron energy range from thermal up to 10 keV.
  •  
7.
  • Cannarozzo, Simone, et al. (författare)
  • Global comparison between experimentally measured isomeric yield ratios and nuclear model calculations
  • 2023
  • Ingår i: European Physical Journal A. - : Springer. - 1434-6001 .- 1434-601X. ; 59:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The level density steers transition probabilities between different states in the decay and de-excitation of excited nuclei. Reliable level density modelling is, therefore, key in describing, e.g., de-excitation of fission fragments, with implications on neutron and gamma-rays multiplicities, and also manifested in the population of isomeric states. We test six currently used level density models and the spin distribution in the level density by comparing calculations with measured isomeric yield ratios. The model calculations are performed with the TALYS code and experimental data for nuclear reactions populating spin isomers are retrieved from the EXFOR database. On average, calculations are in agreement with measured data. However, we find that the population of the high-spin state in an isomeric pair is clearly favoured in all of the six studied level density models. Further studies are then performed on the three used phenomenological level density models, to investigate the significance of their effect. We find that a significant reduction of the spin width distribution improves the agreement between calculated and experimentally observed isomeric yield ratios. This result is independent of the incident particle in the nuclear reaction. The needed reduction of the spin width distribution to comply with empirical data has, e.g., implications for studies in angular momentum generation in fission using isomeric yield rations, calculations of anti-neutrino spectra from nuclear reactors, as well as neutron and gamma-ray multiplicities in nuclear reactor calculations.
  •  
8.
  • Cannarozzo, Simone (författare)
  • Isomeric yield ratio studies in nuclear reactions and alpha-particle induced fission of Thorium
  • 2024
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Despite decades of research since the initial discovery of nuclear fission, numerous unresolved questions still persist. It is known empirically that fission fragments emerge with high angular momentum. The mechanism responsible for the generation of the large angular momenta observed is one of these open questions. Since the characteristics of fission fragments are not directly measurable, experimentally accessible observables are used to derive the angular momenta using nuclear model codes. One of these observables is the yield ratio between fission products produced in different isomeric states, i.e., metastable energy levels of the same nucleus.In this thesis, a study of the level density models implemented in the nuclear model code TALYS is presented. Simulated and experimental isomeric yield ratios of a large number of nuclear reactions is compared. The results show a bias in the models that favours the population of the high-spin states and that this can be produced by the overestimation of the spin width distribution. The reason for this study is to improve the models then used in the angular momentum calculation. Moreover, the isomeric yield ratio measurement of twenty-one FFs is presented. The measurement was performed using the JYFLTRAP system at the University of Jyväskylä. The fission fragments were produced by the 32 MeV alpha-particle induced fission of 232Th. The analysis process, involving different identification and correction methods, and preliminary results are presented.
  •  
9.
  • Domingo-Pardo, C., et al. (författare)
  • Advances and new ideas for neutron-capture astrophysics experiments at CERN n_TOF
  • 2023
  • Ingår i: European Physical Journal A. - : Springer. - 1434-6001 .- 1434-601X. ; 59:1
  • Tidskriftsartikel (refereegranskat)abstract
    • This article presents a few selected developments and future ideas related to the measurement of (n,γ) data of astrophysical interest at CERN n_TOF. The MC-aided analysis methodology for the use of low-efficiency radiation detectors in time-of-flight neutron-capture measurements is discussed, with particular emphasis on the systematic accuracy. Several recent instrumental advances are also presented, such as the development of total-energy detectors with γ-ray imaging capability for background suppression, and the development of an array of small-volume organic scintillators aimed at exploiting the high instantaneous neutron-flux of EAR2. Finally, astrophysics prospects related to the intermediate i neutron-capture process of nucleosynthesis are discussed in the context of the new NEAR activation area.
  •  
10.
  • Domingo-Pardo, C., et al. (författare)
  • Compton imaging for enhanced sensitivity (n,gamma) cross section TOF experiments : Status and prospects
  • 2023
  • Ingår i: 15TH INTERNATIONAL CONFERENCE ON NUCLEAR DATA FOR SCIENCE AND TECHNOLOGY, ND2022. - : EDP Sciences.
  • Konferensbidrag (refereegranskat)abstract
    • Radiative neutron-capture cross sections are of pivotal importance in many fields such as nucle-osynthesis studies or innovative reactor technologies. A large number of isotopes have been measured with high accuracy, but there are still a large number of relevant isotopes whose cross sections could not be experimentally determined yet, at least with sufficient accuracy and completeness, owing to limitations in detection techniques, sample production methods or in the facilities themselves. In the context of the HYMNS (High-sensitivitY Measurements of key stellar Nucleo-Synthesis reactions) project over the last six years we have developed a novel detection technique aimed at background suppression in radiative neutron-capture time-of-flight measurements. This new technique utilizes a complex detection set-up based on position-sensitive radiation-detectors deployed in a Compton-camera array configuration. The latter enables to implement gamma-ray imaging techniques, which help to disentangle true capture events arising from the sample under study and contaminant background events from the surroundings. A summary on the main developments is given in this contribution together with an update on recent experiments at CERN n_TOF and an outlook on future steps.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 38

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy