SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stocker M) srt2:(2015-2019)"

Sökning: WFRF:(Stocker M) > (2015-2019)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Fowler, D., et al. (författare)
  • Effects of global change during the 21st century on the nitrogen cycle
  • 2015
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 15:24, s. 13849-13893
  • Forskningsöversikt (refereegranskat)abstract
    • The global nitrogen (N) cycle at the beginning of the 21st century has been shown to be strongly influenced by the inputs of reactive nitrogen (N-r) from human activities, including combustion-related NOx, industrial and agricultural N fixation, estimated to be 220 TgNyr(-1) in 2010, which is approximately equal to the sum of biological N fixation in unmanaged terrestrial and marine ecosystems. According to current projections, changes in climate and land use during the 21st century will increase both biological and anthropogenic fixation, bringing the total to approximately 600 TgNyr(-1) by around 2100. The fraction contributed directly by human activities is unlikely to increase substantially if increases in nitrogen use efficiency in agriculture are achieved and control measures on combustion-related emissions implemented. Some N-cycling processes emerge as particularly sensitive to climate change. One of the largest responses to climate in the processing of Nr is the emission to the atmosphere of NH3, which is estimated to increase from 65 TgNyr(-1) in 2008 to 93 TgNyr(-1) in 2100 assuming a change in global surface temperature of 5 degrees C in the absence of increased anthropogenic activity. With changes in emissions in response to increased demand for animal products the combined effect would be to increase NH3 emissions to 135 TgNyr(-1). Another major change is the effect of climate changes on aerosol composition and specifically the increased sublimation of NH4NO3 close to the ground to form HNO3 and NH3 in a warmer climate, which deposit more rapidly to terrestrial surfaces than aerosols. Inorganic aerosols over the polluted regions especially in Europe and North America were dominated by (NH4)(2)SO4 in the 1970s to 1980s, and large reductions in emissions of SO2 have removed most of the SO42- from the atmosphere in these regions. Inorganic aerosols from anthropogenic emissions are now dominated by NH4NO3, a volatile aerosol which contributes substantially to PM10 and human health effects globally as well as eutrophication and climate effects. The volatility of NH4NO3 and rapid dry deposition of the vapour phase dissociation products, HNO3 and NH3, is estimated to be reducing the transport distances, deposition footprints and inter-country exchange of N-r in these regions. There have been important policy initiatives on components of the global N cycle. These have been regional or country-based and have delivered substantial reductions of inputs of Nr to sensitive soils, waters and the atmosphere. To date there have been no attempts to develop a global strategy to regulate human inputs to the nitrogen cycle. However, considering the magnitude of global Nr use, potential future increases, and the very large leakage of Nr in many forms to soils, waters and the atmosphere, international action is required. Current legislation will not deliver the scale of reductions globally for recovery from the effects of Nr deposition on sensitive ecosystems, or a decline in N2O emissions to the global atmosphere. Such changes would require substantial improvements in nitrogen use efficiency across the global economy combined with optimization of transport and food consumption patterns. This would allow reductions in Nr use, inputs to the atmosphere and deposition to sensitive ecosystems. Such changes would offer substantial economic and environmental co-benefits which could help motivate the necessary actions.
  •  
7.
  • Arneth, A., et al. (författare)
  • Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed
  • 2017
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 10:2, s. 79-84
  • Forskningsöversikt (refereegranskat)abstract
    • The terrestrial biosphere absorbs about 20% of fossil-fuel CO 2 emissions. The overall magnitude of this sink is constrained by the difference between emissions, the rate of increase in atmospheric CO 2 concentrations, and the ocean sink. However, the land sink is actually composed of two largely counteracting fluxes that are poorly quantified: fluxes from land-use change and CO 2 uptake by terrestrial ecosystems. Dynamic global vegetation model simulations suggest that CO 2 emissions from land-use change have been substantially underestimated because processes such as tree harvesting and land clearing from shifting cultivation have not been considered. As the overall terrestrial sink is constrained, a larger net flux as a result of land-use change implies that terrestrial uptake of CO 2 is also larger, and that terrestrial ecosystems might have greater potential to sequester carbon in the future. Consequently, reforestation projects and efforts to avoid further deforestation could represent important mitigation pathways, with co-benefits for biodiversity. It is unclear whether a larger land carbon sink can be reconciled with our current understanding of terrestrial carbon cycling. Our possible underestimation of the historical residual terrestrial carbon sink adds further uncertainty to our capacity to predict the future of terrestrial carbon uptake and losses.
  •  
8.
  • Mattsson, M., et al. (författare)
  • Personal factors in systemic sclerosis and their coverage by patient-reported outcome measures
  • 2015
  • Ingår i: European Journal of Physical and Rehabilitation Medicine. - 1827-1804. ; 51:4, s. 405-421
  • Tidskriftsartikel (refereegranskat)abstract
    • Background. Systemic sclerosis (SSc) is an autoimmune disease where thickening of the skin can lead to reduced body function and limitations in activities. Severe forms can also affect and seriously damage inner organs. Patient-centred rehabilitation emphasises considerations of patients' background, experience and behavior which highlights the need to know if patient-reported outcome measures (PROMs) include such personal factors. Aim. To identify and describe personal factors in the experiences of functioning and health of persons with SSc and to examine if and to what extent PROMs in SSc research cover these factors. Design. Data from a qualitative study with focus group interviews were analysed. PROMs in SSc research were identified in a literature review between 2008-2013. Setting. Participants were recruited from outpatient clinics at rheumatology department. Population. Sixty-three patients with SSc from four European countries participated. Methods. Data from interviews were analysed using a structure of personal factors developed by Geyh et al. Identified PROMs were analysed and linked to main concepts, related to the personal factors, found in the interview data. Results. Nineteen main concepts were related to the area "patterns of experience and behaviour" in the personal factor structure, 16 to "thoughts and beliefs", nine to "feelings", one to "motives" and one to "personal history and biography", respectively. Among the 35 PROMs identified, 15 did not cover any of the identified concepts. Concepts within the area "feelings" were mostly covered by the PROMs. Five of the PROMs covered "patterns of experience and behaviour", while "motives" and "personal history and biography" were not covered at all. Four of the identified PROMs covered concepts within the areas "feelings", "thoughts and beliefs" and "patterns of experience and behaviour" in the same instrument. The Illness Cognition Questionnaire and Illness Behaviour Questionnaire were such PROMs. Conclusion. Patterns of experience and behaviour had the highest number of concepts related to personal factors, but few of the PROMs in SSc research covered these factors. Only a few PROMs covered several personal factors areas in the same instrument. Clinical Rehabilitation Impact. The results would be of value when developing core sets for outcome measurements in SSc.
  •  
9.
  • Huang, X., et al. (författare)
  • The Extinction Properties of and Distance to the Highly Reddened Type IA Supernova 2012cu
  • 2017
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 836:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Correcting Type Ia Supernova brightnesses for extinction by dust has proven to be a vexing problem. Here we study the dust foreground to the highly reddened SN 2012cu, which is projected onto a dust lane in the galaxy NGC 4772. The analysis is based on multi-epoch, spectrophotometric observations spanning from 3300-9200 A degrees, obtained by the Nearby Supernova Factory. Phase-matched comparison of the spectroscopically twinned SN 2012cu and SN 2011fe across 10 epochs results in the best-fit color excess of (E(B-V), RMS) = (1.00, 0.03) and total-to-selective extinction ratio of (RV, RMS) = (2.95, 0.08) toward SN 2012cu within its host galaxy. We further identify several diffuse interstellar bands and compare the 5780 angstrom band with the dust- to-band ratio for the Milky Way (MW). Overall, we find the foreground dust-extinction properties for SN 2012cu to be consistent with those of the MW. Furthermore, we find no evidence for significant time variation in any of these extinction tracers. We also compare the dust extinction curve models of Cardelli et al., O'Donnell,. and Fitzpatrick, and find the predictions of Fitzpatrick fit SN 2012cu the best. Finally, the distance to NGC4772, the host of SN 2012cu, at a redshift of z = 0.0035, often assigned to the Virgo Southern Extension, is determined to be 16.6 +/- 1.1 Mpc. We compare this result with distance measurements in the literature.
  •  
10.
  • Li, Wei, et al. (författare)
  • Land-use and land-cover change carbon emissions between 1901 and 2012 constrained by biomass observations
  • 2017
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 14:22, s. 5053-5067
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of dynamic global vegetation models (DGVMs) to estimate CO2 emissions from land-use and land-cover change (LULCC) offers a new window to account for spatial and temporal details of emissions and for ecosystem processes affected by LULCC. One drawback of LULCC emissions from DGVMs, however, is lack of observation constraint. Here, we propose a new method of using satellite-and inventory-based biomass observations to constrain historical cumulative LULCC emissions (E-LUC(c)) from an ensemble of nine DGVMs based on emerging relationships between simulated vegetation biomass and E-LUC(c). This method is applicable on the global and regional scale. The original DGVM estimates of E-LUC(c) range from 94 to 273 PgC during 1901-2012. After constraining by current biomass observations, we derive a best estimate of 155 +/- 50 PgC (1 sigma Gaussian error). The constrained LULCC emissions are higher than prior DGVM values in tropical regions but significantly lower in North America. Our emergent constraint approach independently verifies the median model estimate by biomass observations, giving support to the use of this estimate in carbon budget assessments. The uncertainty in the constrained Ec LUC is still relatively large because of the uncertainty in the biomass observations, and thus reduced uncertainty in addition to increased accuracy in biomass observations in the future will help improve the constraint. This constraint method can also be applied to evaluate the impact of land-based mitigation activities.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy