SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stopic Srecko) srt2:(2021)"

Sökning: WFRF:(Stopic Srecko) > (2021)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Köroğlu, Münevver, et al. (författare)
  • One step production of silver-copper (Agcu) nanoparticles
  • 2021
  • Ingår i: Metals. - : MDPI AG. - 2075-4701. ; 11:9
  • Tidskriftsartikel (refereegranskat)abstract
    • AgCu nanoparticles were prepared through hydrogen-reduction-assisted Ultrasonic Spray Pyrolysis (USP) and the Hydrogen Reduction (HR) method. The changes in the morphology and crystal structure of nanoparticles were studied using different concentrated precursors. The structure and morphology of the mixed crystalline particles were characterized through X-ray diffraction analysis (XRD), scanning electron microscopy (FEG-SEM), transmission electron microscopy (TEM) and Energy-dispersive X-ray spectroscopy (EDS). The average particle size decreased from 364 nm to 224 nm by reducing the initial solution concentration from 0.05 M to 0.4 M. These results indicate that the increase in concentration also increases the grain size. Antibacterial properties of nanoparticles against Escherichia coli were investigated. The obtained results indicate that produced particles show antibacterial activity (100%). The AgCu nanoparticles have the usage potential in different areas of the industry.
  •  
2.
  • Ma, Yiqian, et al. (författare)
  • A cleaner approach for recovering Al and Ti from coal fly ash via microwave-assisted baking, leaching, and precipitation
  • 2021
  • Ingår i: Hydrometallurgy. - : Elsevier. - 0304-386X .- 1879-1158. ; 206
  • Tidskriftsartikel (refereegranskat)abstract
    • Coal fly ash (CFA) is a potential mineral resource from which to recover Al and other valuable metals. In this study, a new processing technology for the recovery of Al and Ti from CFA has been developed and comprehensively investigated. The baking process applied in previous work has been improved by using microwave heating and a mixture of H2SO4 + NH4HSO4 as the extractant. This method enhanced the Al and Ti extraction efficiencies, while decreasing energy consumption and gas emissions relative to other acidic baking processes. When employing the optimized baking and leaching parameters (baking conditions: 280 degrees C, 1.2 times the theoretical amount of reagents, 60 min; leaching conditions: 60 degrees C, L/S: 5 g water to 1 g baked ash, 30 min) 82.4% Al and 55.6% Ti could be extracted. Scanning electron microscopy images and X-ray diffraction analysis indicated that most of the mullite (3Al(2)O(3).2SiO(2)) in the CFA was transformed into godovikovite (NH4Al(SO4)(2)) and quartz (SiO2) after microwave-assisted baking. The soluble salts were then leached into solution, while the quartz remained in the residue. Precipitation allowed for the recovery and separation of Al and Ti from the leach solution. Al was selectively recovered via NH4Al(SO4)(2)center dot 12H(2)O precipitation after maintaining the solution at 0 degrees C for 10 h. A high-quality product of alumina was obtained from the NH4Al(SO4)(2)center dot 12H(2)O. After reducing the iron in the solution from Fe3+ to Fe2+, Ti was recovered via hydrolysis after increasing the pH to 3.1. The Ti precipitate contained 44.2% Ti with a small amount of impurity. The developed approach was cleaner and more efficient than those reported to date for the recovery of Al and Ti from stable CFA.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy