SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Strakosas Xenofon) srt2:(2020)"

Sökning: WFRF:(Strakosas Xenofon) > (2020)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Donahue, Mary, et al. (författare)
  • Polymers/PEDOT Derivatives for Bioelectronics
  • 2020. - 1
  • Ingår i: Redox Polymers for Energy and Nanomedicine. - : Royal Society of Chemistry. - 9781788018715 - 9781788019743 - 9781788019750 ; , s. 488-545
  • Bokkapitel (refereegranskat)abstract
    • The advancement of bioelectronics depends greatly on new material development and engineering solutions. Redox polymers are promising candidates to contribute to this advancement of biointerfacing devices. For such devices to be clinically useful, they must fulfill an assortment of requirements, including biocompatibility, stability, mechanical compliancy and the ability to effectively monitor or influence biological systems. The use of redox polymers in bioelectronic research has demonstrated a great deal of potential in satisfying these constraints. In this chapter, we consider the advantageous aspects of polymer electronics for biomedical applications including electrophysiological recording, neuromodulation, biosensor technologies and drug delivery. Particular emphasis is given to PEDOT-based systems as these have demonstrated the highest degree of bioelectronic device success to date, however, other polymers are also discussed when pertinent.
  •  
2.
  • Méhes, Gábor, et al. (författare)
  • Organic Microbial Electrochemical Transistor Monitoring Extracellular Electron Transfer
  • 2020
  • Ingår i: Advanced Science. - : WILEY. - 2198-3844. ; 7:15
  • Tidskriftsartikel (refereegranskat)abstract
    • Extracellular electron transfer (EET) denotes the process of microbial respiration with electron transfer to extracellular acceptors and has been exploited in a range of microbial electrochemical systems (MESs). To further understand EET and to optimize the performance of MESs, a better understanding of the dynamics at the microscale is needed. However, the real-time monitoring of EET at high spatiotemporal resolution would require sophisticated signal amplification. To amplify local EET signals, a miniaturized bioelectronic device, the so-called organic microbial electrochemical transistor (OMECT), is developed, which includes Shewanella oneidensis MR-1 integrated onto organic electrochemical transistors comprising poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) combined with poly(vinyl alcohol) (PVA). Bacteria are attached to the gate of the transistor by a chronoamperometric method and the successful attachment is confirmed by fluorescence microscopy. Monitoring EET with the OMECT configuration is achieved due to the inherent amplification of the transistor, revealing fast time-responses to lactate. The limits of detection when using microfabricated gates as charge collectors are also investigated. The work is a first step toward understanding and monitoring EET in highly confined spaces via microfabricated organic electronic devices, and it can be of importance to study exoelectrogens in microenvironments, such as those of the human microbiome.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy