SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Strasser T) srt2:(2015-2019)"

Sökning: WFRF:(Strasser T) > (2015-2019)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Zhang, Shidong, et al. (författare)
  • Simple and complex polymer electrolyte fuel cell stack models : A comparison
  • 2018. - 13
  • Ingår i: ECS Transactions. - : The Electrochemical Society. - 1938-6737 .- 1938-5862. - 9781607685395 ; 86, s. 287-300
  • Konferensbidrag (refereegranskat)abstract
    • In this paper, two distinct polymer electrolyte fuel cell stack models are constructed: a detailed numerical model (DNM) employing a fine-scale computational mesh and a coarse-mesh approach based on a distributed resistance analogy (DRA) where diffusion terms in the transport equations are replaced by rate terms. Both methods are applied to a 5-cell, high-temperature polymer electrolyte fuel cell stack with an active area of 200 cm2 per cell. The polarization curve and local current density distributions from both the DRA and DNM are compared with experimental data, finding good agreement. Temperature, pressure, Nernst potential, and species distributions are also exhibited. The DNM displays details of fine-scale local extrema not captured by the DRA; however, the latter requires orders of magnitude less computer processor power and memory for execution. Both methods provide much finer-scale results than present experimental techniques.
  •  
5.
  • Andersson, M., et al. (författare)
  • Coupling of lattice boltzmann and volume of fluid approaches to study the droplet behavior at the gas diffusion layer/gas channel interface
  • 2018. - 13
  • Ingår i: ECS Transactions. - : The Electrochemical Society. - 1938-6737 .- 1938-5862. - 9781607688600 ; 86, s. 329-336
  • Konferensbidrag (refereegranskat)abstract
    • A typical polymer electrolyte fuel cell (PEFC) flow field consists of micro/minichannels. The continues removal of liquid water from the cathode channels is a critical topic, as water droplets forming in the channels may block the transport of gaseous oxygen to the active sites, which not only gives an uneven current distribution and substantial loss of performance, but also, increases degradation rates and unstable operation. Water generated by the electrochemical reactions condenses, depending on temperature mainly, into liquid form, potentially flooding various part of the PEFC. The aim of this work is to obtain an increased understanding of the droplet behavior at the gas diffusion layer (GDL) interface with the gas channels in PEFCs by the coupling of Lattice Boltzmann (LB) and Volume of Fluid (VOF) approaches. A multiscale environment is established with input parameters in the VOF model being extracted from in-house LB calculations. It is clear that the contact angle as well as the size of the liquid droplet vary with positions at the GDL surface, depending on the stochastic GDL geometry. A VOF model describing one straight channel with one gas inlet, one liquid inlet (at the GDL surface) and one two-phase outlet is employed.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Paquet-Durand, F., et al. (författare)
  • Systemic and intraocular administration of the liposomal formulation of the cyclic GMP analogue CN03 : An exploratory safety and tolerability study in non-human primates
  • 2019
  • Ingår i: Investigative Ophthalmology and Visual Science. - : ASSOC RESEARCH VISION OPHTHALMOLOGY INC. - 0146-0404 .- 1552-5783. ; 60:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose : The cGMP analogue CN03 targets cGMP signalling, a disease driver common to different types of retinal degeneration. For efficient targeting to the neuroretina CN03 was combined with a liposomal (LP) drug delivery system. In rodents, LP-CN03 has shown significant photoreceptor protection and preservation of in vivo retinal function, without major adverse events. The objective of the study was to determine the toxicity of CN03 and LP-CN03, following intravitreal (IVT) or intravenous (IV) administration. IVT administration is the intended human therapeutic route, IV injection was tested to investigate systemic toxicity.Methods : Cynomolgus monkeys were assigned to five different groups, consisting of one male and one female (n=2). Group 1 served as saline control for IVT and IV dosing, group 2 served as liposome (LP) control. Groups 3 and 4 received IVT injections of either 1X or 10X of the intended therapeutic dose, of either LP-CN03 (left eye) or CN03 (right). Group 5 received 100X IV bolus injections of LP-CN03 (Day 1) and CN03 (Day 25). Toxicity was assessed based on clinical observations, body weights, ophthalmology, intraocular pressure (IOP), electroretinography (ERG), and clinical and anatomic pathology.Results : IVT administration of LP caused transient white opacity in the vitreous body of all treated eyes, related to the milky consistency of LP. IVT injection of 1X and 10X CN03 was well-tolerated and only showed temporary pupil dilation in one male. IVT injection of 1X and 10X LP-CN03 was additionally associated with particles in the anterior chamber and vitreous body. At 10X, pigmented dots were also noted in the anterior lens capsule. IV injection of 100X LP-CN03 and CN03 was well tolerated and did not cause systemic toxicity. Comparison of pre- and post-dosing ERG did not reveal significant differences (p>0.05) in any of the groups, nor were there any indications of pathological changes in retinal morphology.Conclusions : IVT injection of CN03 and LP-CN03 at the intended therapeutic dose was not associated with any changes in ophthalmoscopy, electroretinography or histopathology, and only revealed slight pupil dilation in one animal. IV slow bolus injection at 100X the intended therapeutic dose was well tolerated.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy