SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Strocov V.) srt2:(2015-2019)"

Sökning: WFRF:(Strocov V.) > (2015-2019)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Rubensson, Jan-Erik, et al. (författare)
  • Rydberg-Resolved Resonant Inelastic Soft X-Ray Scattering: Dynamics at Core Ionization Thresholds
  • 2015
  • Ingår i: Physical Review Letters. - 1079-7114 .- 0031-9007. ; 114:13
  • Tidskriftsartikel (refereegranskat)abstract
    • Resonant inelastic x-ray scattering spectra excited in the immediate vicinity of the core-level ionization thresholds of N-2 have been recorded. Final states of well-resolved symmetry-selected Rydberg series converging to valence-level ionization thresholds with vibrational excitations are observed. The results are well described by a quasi-two-step model which assumes that the excited electron is unaffected by the radiative decay. This threshold dynamics simplifies the interpretation of resonant inelastic x-ray scattering spectra considerably and facilitates characterization of low-energy excited final states in molecular systems.
  •  
2.
  • Bouravleuv, A. D., et al. (författare)
  • Electronic structure of (In, Mn) As quantum dots buried in GaAs investigated by soft-x-ray ARPES
  • 2016
  • Ingår i: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 27:42
  • Tidskriftsartikel (refereegranskat)abstract
    • Electronic structure of a molecular beam epitaxy-grown system of (In, Mn) As quantum dots (QDs) buried in GaAs is explored with soft-x-ray angle-resolved photoelectron spectroscopy (ARPES) using photon energies around 1 keV. This technique, ideally suited for buried systems, extends the momentum-resolving capabilities of conventional ARPES with enhanced probing depth as well as elemental and chemical state specificity achieved with resonant photoexcitation. The experimental results resolve the dispersive energy bands of the GaAs substrate buried in similar to 2 nm below the surface, and the impurity states (ISs) derived from the substitutional Mn atoms in the (In, Mn) As QDs and oxidized Mn atoms distributed near the surface. An energy shift of the Mn ISs in the QDs compared to (In, Mn) As DMS is attributed to the band offset and proximity effect at the interface with the surrounding GaAs. The absence of any ISs in the vicinity of the VBM relates the electron transport in (In, Mn) As QDs to the prototype (In, Mn) As diluted magnetic semiconductor. The SX-ARPES results are supported by measurements of the shallow core levels under variation of probing depth through photon energy. X-ray absorption measurements identify significant diffusion of interstitial Mn atoms out of the QDs towards the surface, and the role of magnetic circular dichroism is to block the ferromagnetic response of the (In, Mn) As QDs. Possible routes are drawn to tune the growth procedure aiming at practical applications of the (In, Mn) As based systems.
  •  
3.
  • Horio, M., et al. (författare)
  • Three-Dimensional Fermi Surface of Overdoped La-Based Cuprates
  • 2018
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 121:7
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a soft x-ray angle-resolved photoemission spectroscopy study of overdoped high-temperature superconductors. In-plane and out-of-plane components of the Fermi surface are mapped by varying the photoemission angle and the incident photon energy. No k(z) dispersion is observed along the nodal direction, whereas a significant antinodal k(z) dispersion is identified for La-based cuprates. Based on a tight-binding parametrization, we discuss the implications for the density of states near the van Hove singularity. Our results suggest that the large electronic specific heat found in overdoped La2-xSrxCuO4 cannot be assigned to the van Hove singularity alone. We therefore propose quantum criticality induced by a collapsing pseudogap phase as a plausible explanation for observed enhancement of electronic specific heat.
  •  
4.
  • Kramer, K. P., et al. (författare)
  • Band structure of overdoped cuprate superconductors: Density functional theory matching experiments
  • 2019
  • Ingår i: Physical Review B. - 2469-9969 .- 2469-9950. ; 99:22
  • Tidskriftsartikel (refereegranskat)abstract
    • A comprehensive angle-resolved photoemission spectroscopy study of the band structure in singlelayer cuprates is presented with the aim of uncovering universal trends across different materials. Five different hole-and electron-overdoped cuprate superconductors (La1.59Eu0.2Sr0.21CuO4, La1.77Sr0.23CuO4, Bi1.74Pb0.38Sr1.88CuO6+delta, Tl2Ba2CuO6+delta, and Pr1.15La0.7Ce0.15CuO4) have been studied with special focus on the bands with a predominately d-orbital character. Using a light polarization analysis, the e(g) and t(2g) bands are identified across these materials. A clear correlation between the d(3z2-r2) band energy and the apical oxygen distance d(A) is demonstrated. Moreover, the compound dependence of the d(x2-y2) band bottom and the t(2g) band top is revealed. A direct comparison to density functional theory (DFT) calculations employing hybrid exchange-correlation functionals demonstrates excellent agreement. We thus conclude that the DFT methodology can be used to describe the global band structure of overdoped single-layer cuprates on both the hole-and electron-doped side.
  •  
5.
  • Matt, C. E., et al. (författare)
  • Direct observation of orbital hybridisation in a cuprate superconductor
  • 2018
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • The minimal ingredients to explain the essential physics of layered copper-oxide (cuprates) materials remains heavily debated. Effective low-energy single-band models of the copper-oxygen orbitals are widely used because there exists no strong experimental evidence supporting multi-band structures. Here, we report angle-resolved photoelectron spectroscopy experiments on La-based cuprates that provide direct observation of a two-band structure. This electronic structure, qualitatively consistent with density functional theory, is parametrised by a two-orbital (d(x2-y2) and d(z2)) tight-binding model. We quantify the orbital hybridisation which provides an explanation for the Fermi surface topology and the proximity of the van-Hove singularity to the Fermi level. Our analysis leads to a unification of electronic hopping parameters for single-layer cuprates and we conclude that hybridisation, restraining d-wave pairing, is an important optimisation element for superconductivity.
  •  
6.
  • Pietzsch, A, et al. (författare)
  • Snapshots of the Fluctuating Hydrogen Bond Network in Liquid Water on the Sub-Femtosecond Timescale with Vibrational Resonant Inelastic x-ray Scattering.
  • 2015
  • Ingår i: Physical Review Letters. - 1079-7114. ; 114:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Liquid water molecules interact strongly with each other, forming a fluctuating hydrogen bond network and thereby giving rise to the anomalous phase diagram of liquid water. Consequently, symmetric and asymmetric water molecules have been found in the picosecond time average with IR and optical Raman spectroscopy. With subnatural linewidth resonant inelastic x-ray scattering (RIXS) at vibrational resolution, we take sub-femtosecond snapshots of the electronic and structural properties of water molecules in the hydrogen bond network. We derive a strong dominance of nonsymmetric molecules in liquid water in contrast to the gas phase on the sub-femtosecond timescale of RIXS and determine the fraction of highly asymmetrically distorted molecules.
  •  
7.
  • Sassa, Y., et al. (författare)
  • Probing two- and three-dimensional electrons in MgB2 with soft x-ray angle-resolved photoemission
  • 2015
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 91:4, s. 045114-
  • Tidskriftsartikel (refereegranskat)abstract
    • electronic band structure of MgB2 involves a unique combination of two-and three-dimensional (3D) electrons derived from the boron sigma and pi states, respectively. We have mapped out the sigma and pi bands over the complete Brillouin zone, including the full disconnected Fermi surface, using high-resolution soft x-ray angle-resolved photoelectron spectroscopy. The measured band structure, which is closely related to that of graphene, is in overall good agreement with the density functional theory-general gradient approximation (DFT-GGA), though differences in Fermi surface volume are seen. Surprisingly, the measured bands are wider than calculated, by similar to 8% for the s and similar to 10-15% for the p bands. This solves the long-standing challenge of establishing the full 3D electronic structure of the model compound MgB2, and it demonstrates the tendency of DFT-GGA to overestimate the band narrowing due to exchange correlations effects.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy