SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Struwe J.) srt2:(2010-2014)"

Sökning: WFRF:(Struwe J.) > (2010-2014)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Söderblom, T., et al. (författare)
  • Alarming spread of vancomycin resistant enterococci in Sweden since 2007
  • 2010
  • Ingår i: Eurosurveillance. - 1025-496X .- 1560-7917. ; 15:29
  • Tidskriftsartikel (refereegranskat)abstract
    • The total number of persons infected or colonised with vancomycin-resistant enterococci mandatorily reported to the Swedish Institute for Infectious Disease Control increased dramatically during 2007 and 2008. During a period of twenty months from 1 July 2007 to 28 February 2009, a total of 760 cases were reported compared with 194 cases reported during the entire period from 2000 to 2006. This rise was mainly attributed to a wide dissemination of vancomycin resistant enterococci which started in a number of hospitals in Stockholm in the autumn of 2007 and was followed by dissemination in various healthcare facilities (hospitals and homes for the elderly) in a further two Swedish counties in 2008. The majority of the cases (97%) were acquired in Sweden and among these, healthcare-acquired E. faecium vanB dominated (n=634). The majority of these isolates had identical or closely related pulsed-field gel electrophoresis patterns indicating clonal dissemination in the affected counties. The median minimum inhibitory concentration of vancomycin was 32 mg/L (ranging from 4 to > 128 mg/L) and of teichoplanin 0.12 mg/L (ranging from 0.06 to 0.25 mg/L). Particular emphasis was placed on countermeasures such as screening, contact tracing, cleaning procedures, education in accurate use of infection control practices as well as increasing awareness of hygiene among patients and visitors. With these measures the dissemination rate decreased substantially, but new infections with the E. faecium vanB strain were still detected.
  •  
4.
  • York, W. S., et al. (författare)
  • MIRAGE: The minimum information required for a glycomics experiment
  • 2014
  • Ingår i: Glycobiology. - : Oxford University Press (OUP). - 0959-6658 .- 1460-2423. ; 24:5, s. 402-406
  • Tidskriftsartikel (refereegranskat)abstract
    • The MIRAGE (minimum information required for a glycomics experiment) initiative was founded in Seattle, WA, in November 2011 in order to develop guidelines for reporting the qualitative and quantitative results obtained by diverse types of glycomics analyses, including the conditions and techniques that were applied to prepare the glycans for analysis and generate the primary data along with the tools and parameters that were used to process and annotate this data. These guidelines must address a broad range of issues, as glycomics data are inherently complex and are generated using diverse methods, including mass spectrometry (MS), chromatography, glycan array-binding assays, nuclear magnetic resonance (NMR) and other rapidly developing technologies. The acceptance of these guidelines by scientists conducting research on biological systems in which glycans have a significant role will facilitate the evaluation and reproduction of glycomics experiments and data that is reported in scientific journals and uploaded to glycomics databases. As a first step, MIRAGE guidelines for glycan analysis by MS have been recently published (Kolarich D, Rapp E, Struwe WB, Haslam SM, Zaia J., et al. 2013. The minimum information required for a glycomics experiment (MIRAGE) project - Improving the standards for reporting mass spectrometry-based glycoanalytic data. Mol. Cell Proteomics. 12:991-995), allowing them to be implemented and evaluated in the context of real-world glycobiology research. In this paper, we set out the historical context, organization structure and overarching objectives of the MIRAGE initiative.
  •  
5.
  • Garbe, Julia, et al. (författare)
  • EndoE from Enterococcus faecalis Hydrolyzes the Glycans of the Biofilm Inhibiting Protein Lactoferrin and Mediates Growth.
  • 2014
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Glycosidases are widespread among bacteria. The opportunistic human pathogen Enterococcus faecalis encodes several putative glycosidases but little is known about their functions. The identified endo-β-N-acetylglucosaminidase EndoE has activity on the N-linked glycans of the human immunoglobulin G (IgG). In this report we identified the human glycoprotein lactoferrin (hLF) as a new substrate for EndoE. Hydrolysis of the N-glycans from hLF was investigated using lectin blot, UHPLC and mass spectrometry, showing that EndoE releases major glycoforms from this protein. hLF was shown to inhibit biofilm formation of E. faecalis in vitro. Glycans of hLF influence the binding to E. faecalis, and EndoE-hydrolyzed hLF inhibits biofilm formation to lesser extent than intact hLF indicating that EndoE prevents the inhibition of biofilm. In addition, hLF binds to a surface-associated enolase of E. faecalis. Culture experiments showed that the activity of EndoE enables E. faecalis to use the glycans derived from lactoferrin as a carbon source indicating that they could be used as nutrients in vivo when no other preferred carbon source is available. This report adds important information about the enzymatic activity of EndoE from the commensal and opportunist E. faecalis. The activity on the human glycoprotein hLF, and the functional consequences with reduced inhibition of biofilm formation highlights both innate immunity functions of hLF and a bacterial mechanism to evade this innate immunity function. Taken together, our results underline the importance of glycans in the interplay between bacteria and the human host, with possible implications for both commensalism and opportunism.
  •  
6.
  • Hayes, Jerrard M, et al. (författare)
  • Fc Gamma Receptor Glycosylation Modulates the Binding of IgG Glycoforms : A Requirement for Stable Antibody Interactions
  • 2014
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 13:12, s. 5471-5485
  • Tidskriftsartikel (refereegranskat)abstract
    • FcγRs play a critical role in the immune response following recognition of invading particles and tumor associated antigens by circulating antibodies. In the present study we investigated the role of FcγR glycosylation in the IgG interaction and observed a stabilizing role for receptor N-glycans. We performed a complete glycan analysis of the recombinant FcγRs (FcγRIa, FcγRIIa, FcγRIIb, FcγRIIIaPhe158/Val158, and FcγRIIIb) expressed in human cells and demonstrate that receptor glycosylation is complex and varied between receptors. We used surface plasmon resonance to establish binding patterns between rituximab and all receptors. Complex binding was observed for FcγRIa and FcγRIIIa. The IgG-FcγR interaction was further investigated using a combination of kinetic experiments and enzymatically deglycosylated FcγRIa and FcγRIIIaPhe158/Val158 receptors in an attempt to determine the underlying binding mechanism. We observed that antibody binding levels decreased for deglycosylated receptors, and at the same time, binding kinetics were altered and showed a more rapid approach to steady state, followed by an increase in the antibody dissociation rate. Binding of rituximab to deglycosylated FcγRIIIaPhe158 was now consistent with a 1:1 binding mechanism, while binding of rituximab to FcγRIIIaVal158 remained heterogeneous. Kinetic data support a complex binding mechanism, involving heterogeneity in both antibody and receptor, where fucosylated and afucosylated antibody forms compete in receptor binding and in receptor molecules where heterogeneity in receptor glycosylation plays an important role. The exact nature of receptor glycans involved in IgG binding remains unclear and determination of rate and affinity constants are challenging. Here, the use of more extended competition experiments appear promising and suggest that it may be possible to determine dissociation rate constants for high affinity afucosylated antibodies without the need to purify or express such variants. The data described provide further insight into the complexity of the IgG-FcγR interaction and the influence of FcγR glycosylation.
  •  
7.
  •  
8.
  • Sjögren, Jonathan, et al. (författare)
  • EndoS2 is a unique and conserved enzyme of serotype M49 group A Streptococcus that hydrolyses N-linked glycans on IgG and α1-acid glycoprotein
  • 2013
  • Ingår i: Biochemical Journal. - 0264-6021. ; 455:1, s. 107-118
  • Tidskriftsartikel (refereegranskat)abstract
    • Many bacteria have evolved ways to interact with glycosylation functions of the immune system of their hosts. Streptococcus pyogenes [GAS (group A Streptococcus)] secretes the enzyme EndoS that cleaves glycans on human IgG and impairs the effector functions of the antibody. The ndoS gene, encoding EndoS, has, until now, been thought to be conserved throughout the serotypes. However, in the present study, we identify EndoS2, an endoglycosidase in serotype M49 GAS strains. We characterized EndoS2 and the corresponding ndoS2 gene using sequencing, bioinformatics, phylogenetic analysis, recombinant expression and LC–MS analysis of glycosidic activity. This revealed that EndoS2 is present exclusively, and highly conserved, in serotype M49 of GAS and is only 37% identical with EndoS. EndoS2 showed endo-β-N-acetylglucosaminidase activity on all N-linked glycans of IgG and on biantennary and sialylated glycans of AGP (α1-acid glycoprotein). The enzyme was found to act only on native IgG and AGP and to be specific for free biantennary glycans with or without terminal sialylation. GAS M49 expression of EndoS2 was monitored in relation to carbohydrates present in the culture medium and was linked to the presence of sucrose. We conclude that EndoS2 is a unique endoglycosidase in serotype M49 and differs from EndoS of other GAS strains by targeting both IgG and AGP. EndoS2 expands the repertoire of GAS effectors that modify key glycosylated molecules of host defence.
  •  
9.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy