SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Suarez Calvet M.) srt2:(2021)"

Sökning: WFRF:(Suarez Calvet M.) > (2021)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alemany, S., et al. (författare)
  • Associations between air pollution and biomarkers of Alzheimer's disease in cognitively unimpaired individuals
  • 2021
  • Ingår i: Environment International. - : Elsevier BV. - 0160-4120. ; 157
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Air quality contributes to incidence of Alzheimer's disease (AD) although the underlying neurobiological mechanisms are unclear. This study was aimed to examine the association between air pollution and concentrations of cerebrospinal fluid (CSF) AD biomarkers and amyloid-beta (A beta) deposition. Participants and methods The sample included 156 cognitively unimpaired adults aged 57 years (61 at biomarkers assessment) with increased risk of AD from the ALFA + Study. We examined CSF levels of A beta 42, A beta 40, p-Tau, t-Tau, neurofilament light (NfL) and cerebral amyloid load (Centiloid). A Land Use Regression model from 2009 was used to estimate residential exposure to air pollutants including nitrogen dioxide (NO2,) and particulate matter (PM2.5, PM2.5 abs, PM10). This model was considered a surrogate of long-term exposure until time of data collection in 2013-2014. Participants have resided in the same residence for at least the previous 3 years. Multiple linear regression models were used to estimate associations between air pollutants and biomarkers. The effect modification by CSF A beta status and APOE-epsilon 4 carriership was also assessed. Results: A consistent pattern of results indicated that greater exposure to NO2 and PM2.5 absorbance was associated with higher levels of brain A beta deposition, while greater exposure to PM10 and PM(2.5)was associated with higher levels of CSF NfL. Most associations were driven by individuals that were A beta-positive. Although APOE-epsilon 4 status did not significantly modify these associations, the effect of air pollutants exposure on CSF NfL levels was stronger in APOE-epsilon 4 carriers. Conclusion: In a population of cognitively unimpaired adults with increased risk of AD, long-term exposure to air pollution was associated with higher levels in biomarkers of AD pathology. While further research is granted to elucidate the mechanisms involved in such associations, our results reinforce the role of air pollution as an environmental risk factor for AD.
  •  
2.
  • Grau-Rivera, O., et al. (författare)
  • Association of weight change with cerebrospinal fluid biomarkers and amyloid positron emission tomography in preclinical Alzheimer's disease
  • 2021
  • Ingår i: Alzheimer's Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundRecognizing clinical manifestations heralding the development of Alzheimer's disease (AD)-related cognitive impairment could improve the identification of individuals at higher risk of AD who may benefit from potential prevention strategies targeting preclinical population. We aim to characterize the association of body weight change with cognitive changes and AD biomarkers in cognitively unimpaired middle-aged adults.MethodsThis prospective cohort study included data from cognitively unimpaired adults from the ALFA study (n=2743), a research platform focused on preclinical AD. Cognitive and anthropometric data were collected at baseline between April 2013 and November 2014. Between October 2016 and February 2020, 450 participants were visited in the context of the nested ALFA+ study and underwent cerebrospinal fluid (CSF) extraction and acquisition of positron emission tomography images with [F-18]flutemetamol (FTM-PET). From these, 408 (90.1%) were included in the present study. We used data from two visits (average interval 4.1years) to compute rates of change in weight and cognitive performance. We tested associations between these variables and between weight change and categorical and continuous measures of CSF and neuroimaging AD biomarkers obtained at follow-up. We classified participants with CSF data according to the AT (amyloid, tau) system and assessed between-group differences in weight change.ResultsWeight loss predicted a higher likelihood of positive FTM-PET visual read (OR 1.27, 95% CI 1.00-1.61, p=0.049), abnormal CSF p-tau levels (OR 1.50, 95% CI 1.19-1.89, p=0.001), and an A+T+ profile (OR 1.64, 95% CI 1.25-2.20, p=0.001) and was greater among participants with an A+T+ profile (p<0.01) at follow-up. Weight change was positively associated with CSF A42/40 ratio (beta =0.099, p=0.032) and negatively associated with CSF p-tau (beta=-0.141, p=0.005), t-tau (beta=-0.147 p=0.004) and neurogranin levels (beta=-0.158, p=0.002). In stratified analyses, weight loss was significantly associated with higher t-tau, p-tau, neurofilament light, and neurogranin, as well as faster cognitive decline in A+ participants only.ConclusionsWeight loss predicts AD CSF and PET biomarker results and may occur downstream to amyloid-beta accumulation in preclinical AD, paralleling cognitive decline. Accordingly, it should be considered as an indicator of increased risk of AD-related cognitive impairment.Trial registrationNCT01835717, NCT02485730, NCT02685969.
  •  
3.
  • Mila-Aloma, M., et al. (författare)
  • Cognitively unimpaired individuals with a low burden of A beta pathology have a distinct CSF biomarker profile
  • 2021
  • Ingår i: Alzheimers Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Understanding the changes that occur in the transitional stage between absent and overt amyloid-beta (A beta) pathology within the Alzheimer's continuum is crucial to develop therapeutic and preventive strategies. The objective of this study is to test whether cognitively unimpaired individuals with a low burden of A beta pathology have a distinct CSF, structural, and functional neuroimaging biomarker profile. Methods: Cross-sectional study of 318 middle-aged, cognitively unimpaired individuals from the ALFA+ cohort. We measured CSF A beta 42/40, phosphorylated tau (p-tau), total tau (t-tau), neurofilament light (NfL), neurogranin, sTREM2, YKL40, GFAP, IL6, S100B, and alpha-synuclein. Participants also underwent cognitive assessments, APOE genotyping, structural MRI, [F-18]-FDG, and [F-18]-flutemetamol PET. To ensure the robustness of our results, we used three definitions of low burden of A beta pathology: (1) positive CSF A beta 42/40 and < 30 Centiloids in A beta PET, (2) positive CSF A beta 42/40 and negative A beta PET visual read, and (3) 20-40 Centiloid range in A beta PET. We tested CSF and neuroimaging biomarker differences between the low burden group and the corresponding A beta-negative group, adjusted by age and sex. Results: The prevalence and demographic characteristics of the low burden group differed between the three definitions. CSF p-tau and t-tau were increased in the low burden group compared to the A beta-negative in all definitions. CSF neurogranin was increased in the low burden group definitions 1 and 3, while CSF NfL was only increased in the low burden group definition 1. None of the defined low burden groups showed signs of atrophy or glucose hypometabolism. Instead, we found slight increases in cortical thickness and metabolism in definition 2. Conclusions: There are biologically meaningful A beta-downstream effects in individuals with a low burden of A beta pathology, while structural and functional changes are still subtle or absent. These findings support considering individuals with a low burden of A beta pathology for clinical trials.
  •  
4.
  • Mila-Aloma, M., et al. (författare)
  • Comparative Analysis of Different Definitions of Amyloid-beta Positivity to Detect Early Downstream Pathophysiological Alterations in Preclinical Alzheimer
  • 2021
  • Ingår i: Jpad-Journal of Prevention of Alzheimers Disease. - : SERDI. - 2274-5807. ; 8:1, s. 68-77
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyloid-beta (A beta) positivity is defined using different biomarkers and different criteria. Criteria used in symptomatic patients may conceal meaningful early A beta pathology in preclinical Alzheimer. Therefore, the description of sensitive cutoffs to study the pathophysiological changes in early stages of the Alzheimer'scontinuumis critical. Here, we compare different A beta classification approaches and we show their performance in detecting pathophysiological changes downstream A beta pathology. We studied 368 cognitively unimpaired individuals of the ALFA+ study, many of whom in the preclinical stage of the Alzheimer'scontinuum.Participants underwent A beta PET and CSF biomarkers assessment. We classified participants as A beta -positive using five approaches: (1) CSF A beta 42 < 1098 pg/ml; (2) CSF A beta 42/40 < 0.071; (3) A beta PET Centiloid > 12; (4) A beta PET Centiloid > 30 or (5) A beta PET Positive visual read. We assessed the correlations between A beta biomarkers and compared the prevalence of A beta positivity. We determined which approach significantly detected associations between A beta pathology and tau/neurodegeneration CSF biomarkers. We found that CSF-based approaches result in a higher A beta-positive prevalence than PET-based ones. There was a higher number of discordant participants classified as CSF A beta-positive but PET A beta-negative than CSF A beta-negative but PET A beta-positive. The CSF A beta 42/40 approach allowed optimal detection of significant associations with CSF p-tau and t-tau in the A beta-positive group. Altogether, we highlight the need for sensitive A beta -classifications to study the preclinical Alzheimer'scontinuumApproaches that define A beta positivity based on optimal discrimination of symptomatic Alzheimer's disease patients may be suboptimal for the detection of early pathophysiological alterations in preclinical Alzheimer.
  •  
5.
  • Vilor-Tejedor, N., et al. (författare)
  • Perivascular spaces are associated with tau pathophysiology and synaptic dysfunction in early Alzheimer's continuum
  • 2021
  • Ingår i: Alzheimer's Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Perivascular spaces (PVS) have an important role in the elimination of metabolic waste from the brain. It has been hypothesized that the enlargement of PVS (ePVS) could be affected by pathophysiological mechanisms involved in Alzheimer's disease (AD), such as abnormal levels of CSF biomarkers. However, the relationship between ePVS and these pathophysiological mechanisms remains unknown. Objective We aimed to investigate the association between ePVS and CSF biomarkers of several pathophysiological mechanisms for AD. We hypothesized that ePVS will be associated to CSF biomarkers early in the AD continuum (i.e., amyloid positive cognitively unimpaired individuals). Besides, we explored associations between ePVS and demographic and cardiovascular risk factors. Methods The study included 322 middle-aged cognitively unimpaired participants from the ALFA + study, many within the Alzheimer's continuum. NeuroToolKit and Elecsys (R) immunoassays were used to measure CSF A beta 42, A beta 40, p-tau and t-tau, NfL, neurogranin, TREM2, YKL40, GFAP, IL6, S100, and alpha-synuclein. PVS in the basal ganglia (BG) and centrum semiovale (CS) were assessed based on a validated 4-point visual rating scale. Odds ratios were calculated for associations of cardiovascular and AD risk factors with ePVS using logistic and multinomial models adjusted for relevant confounders. Models were stratified by A beta status (positivity defined as A beta 42/40 < 0.071). Results The degree of PVS significantly increased with age in both, BG and CS regions independently of cardiovascular risk factors. Higher levels of p-tau, t-tau, and neurogranin were significantly associated with ePVS in the CS of A beta positive individuals, after accounting for relevant confounders. No associations were detected in the BG neither in A beta negative participants. Conclusions Our results support that ePVS in the CS are specifically associated with tau pathophysiology, neurodegeneration, and synaptic dysfunction in asymptomatic stages of the Alzheimer's continuum.
  •  
6.
  • Lessa Benedet, Andréa, et al. (författare)
  • Differences Between Plasma and Cerebrospinal Fluid Glial Fibrillary Acidic Protein Levels Across the Alzheimer Disease Continuum
  • 2021
  • Ingår i: Jama Neurology. - : American Medical Association (AMA). - 2168-6149. ; 78:12, s. 1471-1483
  • Tidskriftsartikel (refereegranskat)abstract
    • Question What are the levels of plasma glial fibrillary acidic protein (GFAP) throughout the Alzheimer disease (AD) continuum, and how do they compare with the levels of cerebrospinal fluid (CSF) GFAP? Findings In this cross-sectional study, plasma GFAP levels were elevated in the preclinical and symptomatic stages of AD, with levels higher than those of CSF GFAP. Plasma GFAP had a higher accuracy than CSF GFAP to discriminate between amyloid-beta (A beta)-positive and A beta-negative individuals, also at the preclinical stage. Meaning This study suggests that plasma GFAP is a sensitive biomarker that significantly outperforms CSF GFAP in indicating A beta pathology in the early stages of AD. Importance Glial fibrillary acidic protein (GFAP) is a marker of reactive astrogliosis that increases in the cerebrospinal fluid (CSF) and blood of individuals with Alzheimer disease (AD). However, it is not known whether there are differences in blood GFAP levels across the entire AD continuum and whether its performance is similar to that of CSF GFAP. Objective To evaluate plasma GFAP levels throughout the entire AD continuum, from preclinical AD to AD dementia, compared with CSF GFAP. Design, Setting, and Participants This observational, cross-sectional study collected data from July 29, 2014, to January 31, 2020, from 3 centers. The Translational Biomarkers in Aging and Dementia (TRIAD) cohort (Montreal, Canada) included individuals in the entire AD continuum. Results were confirmed in the Alzheimer's and Families (ALFA+) study (Barcelona, Spain), which included individuals with preclinical AD, and the BioCogBank Paris Lariboisiere cohort (Paris, France), which included individuals with symptomatic AD. Main Outcomes and Measures Plasma and CSF GFAP levels measured with a Simoa assay were the main outcome. Other measurements included levels of CSF amyloid-beta 42/40 (A beta 42/40), phosphorylated tau181 (p-tau181), neurofilament light (NfL), Chitinase-3-like protein 1 (YKL40), and soluble triggering receptor expressed on myeloid cells 2 (sTREM2) and levels of plasma p-tau181 and NfL. Results of amyloid positron emission tomography (PET) were available in TRIAD and ALFA+, and results of tau PET were available in TRIAD. Results A total of 300 TRIAD participants (177 women [59.0%]; mean [SD] age, 64.6 [17.6] years), 384 ALFA+ participants (234 women [60.9%]; mean [SD] age, 61.1 [4.7] years), and 187 BioCogBank Paris Lariboisiere participants (116 women [62.0%]; mean [SD] age, 69.9 [9.2] years) were included. Plasma GFAP levels were significantly higher in individuals with preclinical AD in comparison with cognitively unimpaired (CU) A beta-negative individuals (TRIAD: A beta-negative mean [SD], 185.1 [93.5] pg/mL, A beta-positive mean [SD], 285.0 [142.6] pg/mL; ALFA+: A beta-negative mean [SD], 121.9 [42.4] pg/mL, A beta-positive mean [SD], 169.9 [78.5] pg/mL). Plasma GFAP levels were also higher among individuals in symptomatic stages of the AD continuum (TRIAD: CU A beta-positive mean [SD], 285.0 [142.6] pg/mL, mild cognitive impairment [MCI] A beta-positive mean [SD], 332.5 [153.6] pg/mL; AD mean [SD], 388.1 [152.8] pg/mL vs CU A beta-negative mean [SD], 185.1 [93.5] pg/mL; Paris: MCI A beta-positive, mean [SD], 368.6 [158.5] pg/mL; AD dementia, mean [SD], 376.4 [179.6] pg/mL vs CU A beta-negative mean [SD], 161.2 [67.1] pg/mL). Plasma GFAP magnitude changes were consistently higher than those of CSF GFAP. Plasma GFAP more accurately discriminated A beta-positive from A beta-negative individuals than CSF GFAP (area under the curve for plasma GFAP, 0.69-0.86; area under the curve for CSF GFAP, 0.59-0.76). Moreover, plasma GFAP levels were positively associated with tau pathology only among individuals with concomitant A beta pathology. Conclusions and Relevance This study suggests that plasma GFAP is a sensitive biomarker for detecting and tracking reactive astrogliosis and A beta pathology even among individuals in the early stages of AD. This cross-sectional cohort study evaluates plasma glial fibrillary acidic protein levels throughout the entire Alzheimer disease continuum, from preclinical Alzheimer disease to Alzheimer disease dementia, compared with cerebrospinal fluid glial fibrillary acidic protein.
  •  
7.
  •  
8.
  • Brugulat-Serrat, Anna, et al. (författare)
  • Enhancing the Sensitivity of Memory Tests: Reference Data for the Free and Cued Selective Reminding Test and the Logical Memory Task from Cognitively Healthy Subjects with Normal Alzheimer's Disease Cerebrospinal Fluid Biomarker Levels.
  • 2021
  • Ingår i: Journal of Alzheimer's disease : JAD. - 1875-8908. ; 84:1, s. 119-128
  • Tidskriftsartikel (refereegranskat)abstract
    • Cognitive performance of a given individual should be interpreted in the context of reference standards obtained in cognitively healthy populations. Recent evidence has shown that removing asymptomatic individuals with biomarker evidence of Alzheimer's disease pathology from normative samples increases the sensitivity of norms to detect memory impairments. These kind of norms may be useful for defining subtle cognitive decline, the transitional cognitive decline between normal cognition and mild cognitive impairment.The present study aims to provide norms for the Free and Cued Selective Reminding Test (FCSRT) and the Logical Memory subtest of the Wechsler Memory Scale-IV in a sample of individuals aged 50-70 years with normal levels of amyloid-β and tau cerebrospinal fluid (CSF) biomarkers.The sample was composed of 248 individuals from the ALFA+ study with negative amyloid-β and tau CSF biomarker levels. Regression-based norms were developed, including adjustments for age, education, and sex when applicable.We found that education was associated with the performance in all the variables of both tests while age had a marginal effect only in the delayed free recall of the FCSRT. Sex was also related to the performance in the FCSRT, with women outperforming men. Equations to calculate z-scores and normative percentile tables were created. As compared with previously published norms the reference data presented were more sensitive but less specific, as expected.The use of the norms provided in this work, in combination with the already published conventional norms, may contribute to detecting subtle memory impairment.
  •  
9.
  • Karikari, Thomas, et al. (författare)
  • Diagnostic performance and prediction of clinical progression of plasma phospho-tau181 in the Alzheimer's Disease Neuroimaging Initiative.
  • 2021
  • Ingår i: Molecular psychiatry. - : Springer Science and Business Media LLC. - 1476-5578 .- 1359-4184. ; 26, s. 429-442
  • Tidskriftsartikel (refereegranskat)abstract
    • Whilst cerebrospinal fluid (CSF) and positron emission tomography (PET) biomarkers for amyloid-β (Aβ) and tau pathologies are accurate for the diagnosis of Alzheimer's disease (AD), their broad implementation in clinical and trial settings are restricted by high cost and limited accessibility. Plasma phosphorylated-tau181 (p-tau181) is a promising blood-based biomarker that is specific for AD, correlates with cerebral Aβ and tau pathology, and predicts future cognitive decline. In this study, we report the performance of p-tau181 in >1000 individuals from the Alzheimer's Disease Neuroimaging Initiative (ADNI), including cognitively unimpaired (CU), mild cognitive impairment (MCI) and AD dementia patients characterized by Aβ PET. We confirmed that plasma p-tau181 is increased at the preclinical stage of Alzheimer and further increases in MCI and AD dementia. Individuals clinically classified as AD dementia but having negative Aβ PET scans show little increase but plasma p-tau181 is increased if CSF Aβ has already changed prior to Aβ PET changes. Despite being a multicenter study, plasma p-tau181 demonstrated high diagnostic accuracy to identify AD dementia (AUC=85.3%; 95% CI, 81.4-89.2%), as well as to distinguish between Aβ- and Aβ+ individuals along the Alzheimer's continuum (AUC=76.9%; 95% CI, 74.0-79.8%). Higher baseline concentrations of plasma p-tau181 accurately predicted future dementia and performed comparably to the baseline prediction of CSF p-tau181. Longitudinal measurements of plasma p-tau181 revealed low intra-individual variability, which could be of potential benefit in disease-modifying trials seeking a measurable response to a therapeutic target. This study adds significant weight to the growing body of evidence in the use of plasma p-tau181 as a non-invasive diagnostic and prognostic tool for AD, regardless of clinical stage, which would be of great benefit in clinical practice and a large cost-saving in clinical trial recruitment.
  •  
10.
  • Milà-Alomà, Marta, et al. (författare)
  • CSF Synaptic Biomarkers in the Preclinical Stage of Alzheimer Disease and Their Association With MRI and PET: A Cross-sectional Study.
  • 2021
  • Ingår i: Neurology. - 1526-632X. ; 97:21
  • Tidskriftsartikel (refereegranskat)abstract
    • To determine whether CSF synaptic biomarkers are altered in the early preclinical stage of the Alzheimer continuum and associated with Alzheimer disease (AD) risk factors, primary pathology, and neurodegeneration markers.This cross-sectional study was performed in the Alzheimer's and Families (ALFA+) cohort, comprising middle-aged cognitively unimpaired participants. CSF neurogranin and growth-associated protein-43 (GAP-43) were measured with immunoassays, and synaptosomal-associated protein-25 (SNAP-25) and synaptotagmin-1 were measured with immunoprecipitation mass spectrometry. AD CSF biomarkers β-amyloid (Aβ)42/40, phosphorylated tau (p-tau), and total tau and the neurodegeneration biomarker neurofilament light chain (NfL) were also measured. Participants underwent structural MRI and fluorodeoxyglucose and Aβ PET imaging. General linear modeling was used to test the associations between CSF synaptic biomarkers and risk factors, Aβ pathology, tau pathology, and neurodegeneration markers.All CSF synaptic biomarkers increased with age. CSF neurogranin was higher in females, while CSF SNAP-25 was higher in APOE ε4 carriers. All CSF synaptic biomarkers increased with higher Aβ load (as measured by CSF Aβ42/40 and Aβ PET Centiloid values), and it is important to note that the synaptic biomarkers were increased even in individuals in the earliest stages of Aβ deposition. Higher CSF synaptic biomarkers were also associated with higher CSF p-tau and NfL. Higher CSF neurogranin and GAP-43 were significantly associated with higher brain metabolism but lower cortical thickness in AD-related brain regions.CSF synaptic biomarkers increase in the early preclinical stages of the Alzheimer continuum even when a low burden of Aβ pathology is present, and they differ in their association with age, sex, APOE ε4, and markers of neurodegeneration.ClinicalTrials.gov Identifier NCT02485730.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy