SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sudre Bertrand) "

Sökning: WFRF:(Sudre Bertrand)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • DiSera, Laurel, et al. (författare)
  • The Mosquito, the Virus, the Climate : An Unforeseen Réunion in 2018
  • 2020
  • Ingår i: GeoHealth. - : John Wiley & Sons. - 2471-1403. ; 4:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The 2018 outbreak of dengue in the French overseas department of Réunion was unprecedented in size and spread across the island. This research focuses on the cause of the outbreak, asserting that climate played a large role in the proliferation of the Aedes albopictus mosquitoes, which transmitted the disease, and led to the dengue outbreak in early 2018. A stage‐structured model was run using observed temperature and rainfall data to simulate the life cycle and abundance of the Ae. albopictus mosquito. Further, the model was forced with bias‐corrected subseasonal forecasts to determine if the event could have been forecast up to 4 weeks in advance. With unseasonably warm temperatures remaining above 25°C, along with large tropical‐cyclone‐related rainfall events accumulating 10–15 mm per event, the modeled Ae. albopictus mosquito abundance did not decrease during the second half of 2017, contrary to the normal behavior, likely contributing to the large dengue outbreak in early 2018. Although subseasonal forecasts of rainfall for the December–January period in Réunion are skillful up to 4 weeks in advance, the outbreak could only have been forecast 2 weeks in advance, which along with seasonal forecast information could have provided enough time to enhance preparedness measures. Our research demonstrates the potential of using state‐of‐the‐art subseasonal climate forecasts to produce actionable subseasonal dengue predictions. To the best of the authors' knowledge, this is the first time subseasonal forecasts have been used this way.
  •  
2.
  • Rocklöv, Joacim, et al. (författare)
  • Assessing Seasonal Risks for the Introduction and Mosquito-borne Spread of Zika Virus in Europe
  • 2016
  • Ingår i: EBioMedicine. - : Elsevier. - 2352-3964. ; 9, s. 250-256
  • Tidskriftsartikel (refereegranskat)abstract
    • The explosive Zika virus epidemic in the Americas is amplifying spread of this emerging pathogen into previously unaffected regions of the world, including Europe (Gulland, 2016), where local populations are immunologically naïve. As summertime approaches in the northern hemisphere, Aedes mosquitoes in Europe may find suitable climatic conditions to acquire and subsequently transmit Zika virus from viremic travellers to local populations. While Aedes albopictus has proven to be a vector for the transmission of dengue and chikungunya viruses in Europe (Delisle et al., 2015; ECDC, n.d.) there is growing experimental and ecological evidence to suggest that it may also be competent for Zika virus(Chouin-Carneiro et al., 2016; Grard et al., 2014; Li et al., 2012; Wong et al., 2013). Here we analyze and overlay the monthly flows of airline travellers arriving into European cities from Zika affected areas across the Americas, the predicted monthly estimates of the basic reproduction number of Zika virus in areas where Aedes mosquito populations reside in Europe (Aedes aegypti in Madeira, Portugal and Ae. albopictus in continental Europe), and human populations living within areas where mosquito-borne transmission of Zika virus may be possible. We highlight specific geographic areas and timing of risk for Zika virus introduction and possible spread within Europe to inform the efficient use of human disease surveillance, vector surveillance and control, and public education resources.
  •  
3.
  • Rocklöv, Joacim, Professor, 1979-, et al. (författare)
  • Using Big Data to Monitor the Introduction and Spread of Chikungunya, Europe, 2017
  • 2019
  • Ingår i: Emerging Infectious Diseases. - : Centers for Disease Control and Prevention (CDC). - 1080-6040 .- 1080-6059. ; 25:6, s. 1041-1049
  • Tidskriftsartikel (refereegranskat)abstract
    • With regard to fully harvesting the potential of big data, public health lags behind other fields. To determine this potential, we applied big data (air passenger volume from international areas with active chikungunya transmission, Twitter data, and vectorial capacity estimates of Aedes albopictus mosquitoes) to the 2017 chikungunya outbreaks in Europe to assess the risks for virus transmission, virus importation, and short-range dispersion from the outbreak foci. We found that indicators based on voluminous and velocious data can help identify virus dispersion from outbreak foci and that vector abundance and vectorial capacity estimates can provide information on local climate suitability for mosquitoborne outbreaks. In contrast, more established indicators based on Wikipedia and Google Trends search strings were less timely. We found that a combination of novel and disparate datasets can be used in real time to prevent and control emerging and reemerging infectious diseases.
  •  
4.
  •  
5.
  • Semenza, Jan C., et al. (författare)
  • Environmental Suitability of Vibrio Infections in a Warming Climate : An Early Warning System
  • 2017
  • Ingår i: Journal of Environmental Health Perspectives. - : National Institute of Environmental Health Sciences (NIEHS). - 0091-6765 .- 1552-9924. ; 125:10
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Some Vibrio spp. are pathogenic and ubiquitous in marine waters with low to moderate salinity and thrive with elevated sea surface temperature (SST). OBJECTIVES: Our objective was to monitor and project the suitability of marine conditions for Vibrio infections under climate change scenarios. METHODS: The European Centre for Disease Prevention and Control (ECDC) developed a platform (the ECDC Vibrio Map Viewer) to monitor the environmental suitability of coastal waters for Vibrio spp. using remotely sensed SST and salinity. A case-crossover study of Swedish cases was conducted to ascertain the relationship between SST and Vibrio infection through a conditional logistic regression. Climate change projections for Vibrio infections were developed for Representative Concentration Pathway (RCP) 4.5 and RCP 8.5. RESULTS: The ECDC Vibrio Map Viewer detected environmentally suitable areas for Vibrio spp. in the Baltic Sea in July 2014 that were accompanied by a spike in cases and one death in Sweden. The estimated exposure response relationship for Vibrio infections at a threshold of 16 degrees C revealed a relative risk (RR) = 1.14 (95% CI: 1.02, 1.27; p=0.024) for a lag of 2 wk; the estimated risk increased successively beyond this SST threshold. Climate change projections for SST under the RCP 4.5 and RCP 8.5 scenarios indicate a marked upward trend during the summer months and an increase in the relative risk of these infections in the coming decades. CONCLUSIONS: This platform can serve as an early warning system as the risk of further Vibrio infections increases in the 21st ritui due to climate change.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy