SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sugita Shinya) srt2:(2020-2023)"

Sökning: WFRF:(Sugita Shinya) > (2020-2023)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Githumbi, Esther, et al. (författare)
  • European pollen-based REVEALS land-cover reconstructions for the Holocene : Methodology, mapping and potentials
  • 2022
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 14:4, s. 1581-1619
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantitative reconstructions of past land cover are necessary to determine the processes involved in climate-human-land-cover interactions. We present the first temporally continuous and most spatially extensive pollen-based land-cover reconstruction for Europe over the Holocene (last 11g€¯700g€¯calg€¯yrg€¯BP). We describe how vegetation cover has been quantified from pollen records at a 11 spatial scale using the "Regional Estimates of VEgetation Abundance from Large Sites"(REVEALS) model. REVEALS calculates estimates of past regional vegetation cover in proportions or percentages. REVEALS has been applied to 1128 pollen records across Europe and part of the eastern Mediterranean-Black Sea-Caspian corridor (30-75° N, 25° W-50° E) to reconstruct the percentage cover of 31 plant taxa assigned to 12 plant functional types (PFTs) and 3 land-cover types (LCTs). A new synthesis of relative pollen productivities (RPPs) for European plant taxa was performed for this reconstruction. It includes multiple RPP values (≥2 values) for 39 taxa and single values for 15 taxa (total of 54 taxa). To illustrate this, we present distribution maps for five taxa (Calluna vulgaris, Cerealia type (t)., Picea abies, deciduous Quercus t. and evergreen Quercus t.) and three land-cover types (open land, OL; evergreen trees, ETs; and summer-green trees, STs) for eight selected time windows. The reliability of the REVEALS reconstructions and issues related to the interpretation of the results in terms of landscape openness and human-induced vegetation change are discussed. This is followed by a review of the current use of this reconstruction and its future potential utility and development. REVEALS data quality are primarily determined by pollen count data (pollen count and sample, pollen identification, and chronology) and site type and number (lake or bog, large or small, one site vs. multiple sites) used for REVEALS analysis (for each grid cell). A large number of sites with high-quality pollen count data will produce more reliable land-cover estimates with lower standard errors compared to a low number of sites with lower-quality pollen count data. The REVEALS data presented here can be downloaded from https://doi.org/10.1594/PANGAEA.937075 (Fyfe et al., 2022).
  •  
2.
  • Githumbi, Esther, et al. (författare)
  • Pollen-Based Maps of Past Regional Vegetation Cover in Europe Over 12 Millennia-Evaluation and Potential
  • 2022
  • Ingår i: Frontiers in Ecology and Evolution. - : Frontiers Media S.A.. - 2296-701X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Realistic and accurate reconstructions of past vegetation cover are necessary to study past environmental changes. This is important since the effects of human land-use changes (e.g. agriculture, deforestation and afforestation/reforestation) on biodiversity and climate are still under debate. Over the last decade, development, validation, and application of pollen-vegetation relationship models have made it possible to estimate plant abundance from fossil pollen data at both local and regional scales. In particular, the REVEALS model has been applied to produce datasets of past regional plant cover at 1 degrees spatial resolution at large subcontinental scales (North America, Europe, and China). However, such reconstructions are spatially discontinuous due to the discrete and irregular geographical distribution of sites (lakes and peat bogs) from which fossil pollen records have been produced. Therefore, spatial statistical models have been developed to create continuous maps of past plant cover using the REVEALS-based land cover estimates. In this paper, we present the first continuous time series of spatially complete maps of past plant cover across Europe during the Holocene (25 time windows covering the period from 11.7 k BP to present). We use a spatial-statistical model for compositional data to interpolate REVEALS-based estimates of three major land-cover types (LCTs), i.e., evergreen trees, summer-green trees and open land (grasses, herbs and low shrubs); producing spatially complete maps of the past coverage of these three LCTs. The spatial model uses four auxiliary data sets-latitude, longitude, elevation, and independent scenarios of past anthropogenic land-cover change based on per-capita land-use estimates ("standard" KK10 scenarios)-to improve model performance for areas with complex topography or few observations. We evaluate the resulting reconstructions for selected time windows using present day maps from the European Forest Institute, cross validate, and compare the results with earlier pollen-based spatially-continuous estimates for five selected time windows, i.e., 100 BP-present, 350-100 BP, 700-350 BP, 3.2-2.7 k BP, and 6.2-5.7 k BP. The evaluations suggest that the statistical model provides robust spatial reconstructions. From the maps we observe the broad change in the land-cover of Europe from dominance of naturally open land and persisting remnants of continental ice in the Early Holocene to a high fraction of forest cover in the Mid Holocene, and anthropogenic deforestation in the Late Holocene. The temporal and spatial continuity is relevant for land-use, land-cover, and climate research.
  •  
3.
  • Li, Furong, et al. (författare)
  • Evaluation of relative pollen productivities in temperate China for reliable pollen-based quantitative reconstructions of Holocene plant cover
  • 2023
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media S.A.. - 1664-462X. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • The Landscape Reconstruction Algorithm (LRA) is regarded as the soundest approach for quantifying taxon-specific plant cover from pollen data. The reliability of relative pollen productivity (RPP) estimates is fundamental in the accuracy of quantitative vegetation reconstruction using the LRA approach. Inconsistent RPP estimates produced by different studies can cast doubt on the reliability and applicability of quantitative vegetation reconstruction. Therefore, it is crucial that the RPP estimates are evaluated before being applied for quantitative vegetation reconstruction. We have tested two alternative approaches, namely, a leave-one-out cross-validation (LOO) method and a splitting-by-subregion strategy, using surface pollen assemblages and the REVEALS model-the first step in the LRA-to evaluate the reliability of RPPs estimates of 10 target taxa obtained in the cultural landscape of Shandong. We compared the REVEALS estimates (RVs) with observations of regional vegetation abundance (OBVs) and pollen proportions (PPs). The RVs of all taxa are generally closer to OBVs than PPs, and the degree of similarity depends strongly on the abundance of individual taxa in plant and pollen; taxa dominant in the region show the highest similarity between RVs and OBVs, such as Artemisia, Poaceae, and Humulus. The RVs of all herb taxa except Humulus and Asteraceae SF Cichorioideae are slightly overrepresented, and the RVs of all tree taxa are underrepresented except for Castanea. The comparison of RVs with OBVs collected from different spatial extents shows that the RVs of all herb taxa are more similar to OBVs collected from shorter distances (100 km and 75 km for the entire region and the subregion, respectively), whereas the RVs of all tree taxa are more similar to OBVs collected from longer distances (150 km and 100 km for the entire region and the subregion, respectively). Furthermore, our findings highlight the importance to test different sizes of area for vegetation surveys for evaluation of the RVs given that the appropriate size of vegetation survey may vary between low pollen producers (mainly herbs) and high pollen producers (mainly trees). We consider that the LOO strategy is the best approach in this case study for evaluating the RPP estimates from surface moss polsters. The evaluation confirms the reliability of the obtained RPP estimates for their potential application in quantitative reconstruction of vegetation abundance in temperate China.
  •  
4.
  • Li, Furong, et al. (författare)
  • Gridded pollen-based Holocene regional plant cover in temperate and northernsubtropical China suitable for climate modelling
  • 2023
  • Ingår i: Earth System Science Data. - : Copernicus Publications. - 1866-3508 .- 1866-3516. ; 15:1, s. 95-112
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first gridded and temporally continuous quantitative pollen-based plant-cover reconstruction for temperate and northern subtropical China over the Holocene (11.7 ka to present) obtained by applying the Regional Estimates of VEgetation Abundance from Large Sites (REVEALS) model. The objective is to provide a dataset of pollen-based land cover for the last ca. 12 millennia that is suitable for palaeoclimate modelling and for the evaluation of simulated past vegetation cover from dynamic vegetation models and anthropogenic land-cover change (ALCC) scenarios. The REVEALS reconstruction was achieved using 94 selected pollen records from lakes and bogs at a 1 degrees x 1 degrees spatial scale and a temporal resolution of 500 years between 11.7 and 0.7 ka and in three recent time windows (0.7-0.35 ka, 0.35-0.1 ka, and 0.1 ka to present). The dataset includes REVEALS estimates of cover and their standard errors (SEs) for 27 plant taxa in 75 1 degrees x 1 degrees grid cells distributed within the study region. The 27 plant taxa were also grouped into 6 plant functional types and 3 land-cover types (coniferous trees CT, broadleaved trees BT, and C-3 herbs/open land (C3H/OL)), and their REVEALS estimates of cover and related SEs were calculated. We describe the protocol used for the selection of pollen records and the REVEALS application (with parameter settings) and explain the major rationales behind the protocol. As an illustration, we present, for eight selected time windows, gridded maps of the pollen-based REVEALS estimates of cover for the three land-cover types (CT, BT, and C3H/OL). We then discuss the reliability and limitations of the Chinese dataset of Holocene gridded REVEALS plant cover, and its current and potential uses. The dataset is available at the National Tibetan Plateau Data Center (TPDC; Li, 2022; ).
  •  
5.
  • Li, Furong, et al. (författare)
  • Towards quantification of Holocene anthropogenic land-cover change in temperate China : A review in the light of pollen-based REVEALS reconstructions of regional plant cover
  • 2020
  • Ingår i: Earth-Science Reviews. - : Elsevier. - 0012-8252 .- 1872-6828. ; 203, s. 1-25
  • Forskningsöversikt (refereegranskat)abstract
    • In an attempt to quantify Holocene anthropogenic land-cover change in temperate China, we 1) applied the REVEALS model to estimate plant-cover change using 94 pollen records and relative pollen productivity for 27 plant taxa, 2) reviewed earlier interpretation of pollen studies in terms of climate- and human-induced vegetation change, and 3) reviewed information on past land use from archaeological studies. REVEALS achieved a more realistic reconstruction of plant-cover change than pollen percentages in terms of openland versus woodland. The study suggests successive human-induced changes in vegetation cover. The first signs of human-induced land-cover change (crop cultivation, otherwise specified) are found c. 7 ka BP in the temperate deciduous forest, and S and NE Tibetan Plateau (mainly grazing, possibly crop cultivation), 6.5-6 ka BP in the temperate steppe and temperate desert (grazing, uncertain), and 5.5-5 ka BP in the coniferous-deciduous mixed forest, NE subtropical region, and NW Tibetan Plateau (grazing). Further intensification of anthropogenic land-cover change is indicated 5-4.5 ka BP in the E temperate steppe, and S and NE Tibetan Plateau (grazing, cultivation uncertain), 3.5-3 ka BP in S and NE Tibetan Plateau, W temperate steppe, temperate desert (grazing), and NW Tibetan Plateau (probably grazing), and 2.5-2 ka BP in the temperate deciduous forest, N subtropical region, and temperate desert (grazing). These changes generally agree with increased human activity as documented by archaeological studies. REVEALS reconstructions have a stronger potential than biomization to evaluate scenarios of anthropogenic land-cover change such as HYDE, given they are combined with information from archaeological studies.
  •  
6.
  • Marquer, Laurent, et al. (författare)
  • Pollen-based reconstruction of Holocene land-cover in mountain regions : Evaluation of the Landscape Reconstruction Algorithm in the Vicdessos valley, northern Pyrenees, France
  • 2020
  • Ingår i: Quaternary Science Reviews. - : Elsevier. - 0277-3791 .- 1873-457X. ; 228, s. 1-15
  • Forskningsöversikt (refereegranskat)abstract
    • Long-term perspectives on climate- and human-induced shifts in plant communities and tree line in mountains are often inferred from fossil pollen records. However, various factors, such as complex patterns of orographic wind fields and abundant insect-pollinated plants in higher altitudes, make pollen-based reconstruction in mountain regions difficult. Over the last decade the Landscape Reconstruction Algorithm (LRA) - a model-based approach in reconstruction of vegetation - has been successfully applied in various parts of the globe. However, evaluation of its effectiveness in mountain ranges is still limited. The present study assesses the extent to which the LRA approach helps quantify the local changes in vegetation cover at Vicdessos valley in northern French Pyrenees as a case study. In the study area well-dated sediment cores are available from eight bogs and ponds, 6-113 m in radius, located above the current tree line. We first use a simple simulation experiment to evaluate the way how pollen records from "landscape islands" (mountain tops and plateaus) would represent local vegetation and to clarify important factors affecting the LRA-based reconstruction in a mountainous region. This study then uses pollen records from these sites and vegetation and land-cover data both within a 50-km radius around the Vicdessos valley and within a 2-km radius from each site for evaluation of the REVEALS- and LOVE-based reconstruction of the regional and local plant cover, respectively, in the LRA approach. The land-cover data are complied for coniferous trees, broadleaved trees and non-forested areas from the CORINE and historical maps in three time windows: 1960-1970, 1990-2000 and 2000-2013. Major findings are as follows. (1) Accuracy of the regional vegetation estimates affects the reliability of the LRA-based reconstruction of vegetation within a 2-km radius; use of the CORINE data as input to the LOVE model improves reliability of the results over the use of the REVEALS-based estimates of regional vegetation. This implies that a systematic selection of pollen data only from sites above the tree line is problematic for estimating regional vegetation, and thus the entire LRA process. (2) Selection of the dispersal models for pollen transport (i.e. the Langrangian Stochastic Model vs. Gaussian Plume Model) does not affect significantly the LRA-based estimates at both the regional and local scales in the study area. (3) The LRA approach improves the pollen-based reconstruction of local vegetation compared to pollen percentage alone in northern Pyrenees. Although further empirical and simulation studies are necessary, our results emphasize the importance of site selection for the LRA-based reconstruction of vegetation in mountain regions. (C) 2019 Elsevier Ltd. All rights reserved.
  •  
7.
  •  
8.
  •  
9.
  • Strandberg, Gustav, 1977-, et al. (författare)
  • Mid-Holocene European climate revisited : New high-resolution regional climate model simulations using pollen-based land-cover
  • 2022
  • Ingår i: Quaternary Science Reviews. - : Elsevier. - 0277-3791 .- 1873-457X. ; 281
  • Tidskriftsartikel (refereegranskat)abstract
    • Land-cover changes have a clear impact on local climates via biophysical effects. European land cover has been affected by human activities for at least 6000 years, but possibly longer. It is thus highly probable that humans altered climate before the industrial revolution (AD1750-1850). In this study, climate and vegetation 6000 years (6 ka) ago is investigated using one global climate model, two regional climate models, one dynamical vegetation model, pollen-based reconstruction of past vegetation cover using a model of the pollen-vegetation relationship and a statistical model for spatial interpolation of the reconstructed land cover. This approach enables us to study 6 ka climate with potential natural and reconstructed land cover, and to determine how differences in land cover impact upon simulated climate. The use of two regional climate models enables us to discuss the robustness of the results. This is the first experiment with two regional climate models of simulated palaeo-climate based on regional climate models. Different estimates of 6 ka vegetation are constructed: simulated potential vegetation and reconstructed vegetation. Potential vegetation is the natural climate-induced vegetation as simulated by a dynamical vegetation model driven by climate conditions from a climate model. Bayesian spatial model interpolated point estimates of pollen-based plant abundances combined with estimates of climate-induced potential un-vegetated land cover were used for reconstructed vegetation. The simulated potential vegetation is heavily dominated by forests: evergreen coniferous forests dominate in northern and eastern Europe, while deciduous broadleaved forests dominate central and western Europe. In contrast, the reconstructed vegetation cover has a large component of open land in most of Europe. The simulated 6 ka climate using reconstructed vegetation was 0-5 degrees C warmer than the pre-industrial (PI) climate, depending on season and region. The largest differences are seen in north-eastern Europe in winter with about 4-6 degrees C, and the smallest differences (close to zero) in southwestern Europe in winter. The simulated 6 ka climate had 10-20% more precipitation than PI climate in northern Europe and 10-20% less precipitation in southern Europe in summer. The results are in reasonable agreement with proxy-based climate reconstructions and previous similar climate modelling studies. As expected, the global model and regional models indicate relatively similar climates albeit with regional differences indicating that, models response to land-cover changes differently. The results indicate that the anthropogenic land-cover changes, as given by the reconstructed vegetation, in this study are large enough to have a significant impact on climate. It is likely that anthropogenic impact on European climate via land-use change was already taking place at 6 ka. Our results suggest that anthropogenic land-cover changes at 6 ka lead to around 0.5 degrees C warmer in southern Europe in summer due to biogeophysical forcing. (C) 2022 The Authors. Published by Elsevier Ltd.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy