SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sugunan Abhilash) srt2:(2010-2014)"

Sökning: WFRF:(Sugunan Abhilash) > (2010-2014)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Afrasiabi, Roodabeh, et al. (författare)
  • Microwave mediated synthesis of semiconductor quantum dots
  • 2012
  • Ingår i: Physica Status Solidi. C, Current topics in solid state physics. - : Wiley. - 1610-1634 .- 1610-1642. ; 9:7, s. 1551-1556
  • Tidskriftsartikel (refereegranskat)abstract
    • Colloidal quantum dots (QD) have tuneable optoelectronic properties and can be easily handled by simple solution processing techniques, making them very attractive for a wide range of applications. Over the past decade synthesis of morphology controlled high quality (crystalline, monodisperse) colloidal QDs by thermal decomposition of organometallic precursors has matured and is well studied. Recently, synthesis of colloidal QDs by microwave irradiation as heating source is being studied due to the inherently different mechanisms of heat transfer, when compared to solvent convection based heating. Under microwave irradiation, polar precursor molecules directly absorb the microwave energy and heat up more efficiently. Here we report synthesis of colloidal II-VI semiconductor QDs (CdS, CdSe, CdTe) by microwave irradiation and compare it with conventional synthesis based on convection heating. Our findings show that QD synthesis by microwave heating is more efficient and the chalcogenide precursor strongly absorbs the microwave radiation shortening the reaction time and giving a high reaction yield.
  •  
2.
  • Dong, Lin, et al. (författare)
  • Photoluminescence from quasi-type-II spherical CdSe-CdS core-shell quantum dots
  • 2013
  • Ingår i: Applied Optics. - 1559-128X .- 2155-3165. ; 52:1, s. 105-109
  • Tidskriftsartikel (refereegranskat)abstract
    • Spherical CdSe-CdS core-shell quantum dots (QDs) are found to be flexible in the transition between the type-I regime and the type-II regime with different core/shell dimensions. The quasi-type-II feature of the colloidal dots is confirmed with time-resolved photoluminescence (PL) measurements. Two recombination paths of the excitons with significantly different decay rates are observed and analyzed. The spherical CdSe-CdS core-shell QDs are numerically simulated to investigate the carrier separation. A relatively long radiative lifetime and high degree of spatial carrier separation provide good potential to achieve lasing under continuous-wave excitation. Amplified spontaneous emission at room temperature is detected from the QDs embedded in the polymer matrix. It is shown that a larger shell thickness results in a lower pumping threshold, while a smaller shell thickness leads to higher PL efficiency.
  •  
3.
  • Fornara, Andrea, 1980-, et al. (författare)
  • Polymeric/inorganic multifunctional nanoparticles for simultaneous drug delivery and visualization
  • 2010
  • Ingår i: Materials Research Society Symposium Proceedings. - 0272-9172 .- 1946-4274. ; 1257
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanoparticles consisting of different biocompatible materials are attracting a lot of interest in the biomedical area as useful tools for drug delivery, photo-therapy and contrast enhancement agents in MRI, fluorescence and confocal microscopy. This work mainly focuses on the synthesis of polymeric/inorganic multifunctional nanoparticles (PIMN) based on biocompatible di-block copolymer poly(L,L-lactide-co-ethylene glycol) (PLLA-PEG) via an emulsion-evaporation method. Besides containing a hydrophobic drug (Indomethacin), these polymeric nanoparticles incorporate different visualization agents such as superparamagnetic iron oxide nanoparticles (SPION) and fluorescent Quantum Dots (QDs) that are used as contrast agents for Magnetic Resonance Imaging (MRI) and fluorescence microscopy together. Gold Nanorods are also incorporated in such nanostructures to allow simultaneous visualization and photodynamic therapy. MRI studies are performed with different loading of SPION into PIMN, showing an enhancement in T2 contrast superior to commercial contrast agents. Core-shell QDs absorption and emission spectra are recorded before and after their loading into PIMN. With these polymeric/inorganic multifunctional nanoparticles, both MRI visualization and confocal fluorescence microscopy studies can be performed. Gold nanorods are also synthesized and incorporated into PIMN without changing their longitudinal absorption peak usable for lased excitation and phototherapy. In-vitro cytotoxicity studies have also been performed to confirm the low cytotoxicity of PIMN for further in-vivo studies.
  •  
4.
  • Rihtnesberg, D. B., et al. (författare)
  • ZnO nanorods/nanoflowers and their applications
  • 2011
  • Ingår i: Proc. - Int. NanoElectronics Conf., INEC. - 9781457703799
  • Konferensbidrag (refereegranskat)abstract
    • Single-crystalline zinc oxide (ZnO) nanorods (NRs) have been synthesized through a chemical bath deposition method. Their diameter is about 80 nm, and their length range from 1 μm to 7 μm can be controlled by growth time. Formation of nanoflower arrays composed of nanorods has been also achieved utilizing a standard micro-fabrication technique. Two types of ZnO nanorods devices are detailed to demonstrate their optoelectronic applications.
  •  
5.
  • Shahid, Robina, et al. (författare)
  • Microwave assisted synthesis of ZnS quantum dots using ionic liquids
  • 2012
  • Ingår i: Materials letters (General ed.). - : Elsevier BV. - 0167-577X .- 1873-4979. ; 89, s. 316-319
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work we report results from microwave (MW) assisted synthesis of highly crystalline ZnS quantum dots (QDs) using ionic liquid (ILs) as MW absorbing medium. Two types of ionic liquids, imidazolium and phosphonium based, were used. The QDs are less than 5 nm in size and of wurtzite ZnS type, as characterized by high-resolution transmission electron microscopy (HR-TEM) and selected area electron diffraction (SAED) pattern. The optical properties were investigated by UV-vis absorption and show a blue shift in absorption as compared to bulk wurtzite ZnS due to quantum confinement effects. The photoluminescence (PL) spectra of the QDs show different trap state emissions.
  •  
6.
  • Sugunan, Abhilash, 1980- (författare)
  • Fabrication and Photoelectrochemical Applications of II-VI Semiconductor Nanomaterials
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this work we investigated fabrication of semiconductor nanomaterials and evaluated their potential for photo-chemical and photovoltaic applications. We investigated different II-VI semiconductor nanomaterial systems; (i) ZnO oriented nanowire arrays non-epitaxially grown from a substrate; and (ii) colloidal CdE (E=Te,Se,S) quantum structures synthesized by solution-based thermal decomposition of organo-metallic precursors. We have studied the synthesis of vertically aligned ZnO nanowire arrays (NWA), by a wet chemical process on various substrates. We have extended this method wherein nanofibers of poly-L-lactide act as a substrate for the radially oriented growth of ZnO nanowires. By combining the large surface area and the flexibility of the PLLA-ZnO hierarchical nanostructure we have shown the proof-of-principle demonstration of a ‘continuous-flow’ water treatment system to decompose known organic pollutants in water, as well as render common waterborne bacteria non-viable. We have studied synthesis of colloidal quantum dots (QD), and show size, morphology and composition tailored nanocrystals for CdE (E=S, Se, Te) compositions. We have studied the influence of crystal growth habits of the nanocrtsyals on the final morphology. Furthermore we have synthesized core-shell, CdSe-CdS QDs with spherical and tetrahedral morphologies by varying the reaction conditions. We show that these core-shell quantum dots show quasi-type II characteristics, and demonstrate with I-V measurements, the spatial localization of the charge carriers in these hetero-nanocrystals. For this purpose, we developed hybrid materials consisting of the core-shell quantum dots with electron acceptors (ZnO nanowires) and hole acceptors (polymeric P3HT nanofibers). In addition we have also compared the synthesis reaction when carried out with conventional heating and microwave-mediated heating. We find that the reaction is enhanced, and the yield is qualitatively better when using microwave induced heating.
  •  
7.
  •  
8.
  • Sugunan, Abhilash, 1980- (författare)
  • Photochemical and Photoelectric Applications of II-VI Semiconductor Nanomaterials
  • 2010
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this work we investigated fabrication of semiconductor nanomaterials and evaluated their potential for photo-chemical and photovoltaic applications. We investigated two different II-VI semiconductor nanomaterial systems; (i) ZnO oriented nanowire arrays non-epitaxially grown from a substrate; and (ii) colloidal CdTe nanotetrapods synthesized by solution-based thermal decomposition of organo-metallic precursors. In both the cases our main focus has been optimizing material synthesis for improving potential applications based on photon-electron interactions. We have studied the synthesis of vertically aligned ZnO nanowire arrays (NWA), by a wet chemical process on various substrates. The synthesis is based on epitaxial growth of ZnO seed-layer on a substrate in a chemical bath consisting of an aqueous solution of zinc nitrate and hexamethylenetetramine (HMT). We have suggested an additional role played by HMT during the synthesis of ZnO nanowire arrays. We have also extended this synthesis method to fabricate hierarchical nanostructures of nanofibers of poly-L-lactide acting as a substrate for the radially oriented growth of ZnO nanowires. The combination of high surface area of the nanofibrous substrate with the flexibility of the PLLA-ZnO hierarchical nanostructure enabled the proof-of-principle demonstration of a ‘continuous-flow’ water treatment system that could effectively decompose single and combination of known organic pollutants in water, as well as render common waterborne bacteria nonviable. We have studied another chemical synthesis that is commonly used for size controlled synthesis of colloidal quantum dots, which was modified to obtain anisotropic nanocrystals mainly for CdE (E=S, Se, Te) compositions. In this work we demonstrate by use of oleic acid (instead of alkylphosphonic acids) it is possible to synthesize CdTe and CdSe nanotetrapods at much lower temperatures (~180 ºC) than what is commonly reported in the literature, with significantly different  formation mechanism in the low-temperature reaction. Finally, we have performed preliminary photoconduction measurements with CdTe nanotetrapods using gold ‘nanogap’ electrodes fabricated in-house, and obtain up to 100 times enhancement in current levels in the I–V measurements under illumination with a white light source.
  •  
9.
  • Sugunan, Abhilash, et al. (författare)
  • Radially Oriented ZnO Nanowires on Flexible Poly-L-Lactide Nanofibers for Continuous-Flow Photocatalytic Water Purification
  • 2010
  • Ingår i: Journal of The American Ceramic Society. - : Wiley. - 0002-7820 .- 1551-2916. ; 93:11, s. 3740-3744
  • Tidskriftsartikel (refereegranskat)abstract
    • Several oxide ceramics, notably ZnO and TiO2 are known to catalyze decomposition of organic molecules in water under ultraviolet (UV) irradiation. Here we describe fabrication of highly flexible ZnO-based hierarchical nanostructure obtained by growing radially oriented ZnO nanowires on poly-L-lactide nanofibers. Utilizing the flexibility and high surface area of polymeric nanofibers as novel substrate for growth of the photochemically active ZnO nanowires we show a proof-of-principle demonstration of a continuous flow water treatment setup. We have monitored photocatalytic decomposition of known organic pollutants, such as methylene blue, monocrotophos, and diphenylamine under illumination with UV light using this highly flexible hierarchical nanostructure.
  •  
10.
  • Sugunan, Abhilash, et al. (författare)
  • Synthesis of tetrahedral quasi-type-II CdSe-CdS core-shell quantum dots
  • 2011
  • Ingår i: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 22:42, s. 425202-
  • Tidskriftsartikel (refereegranskat)abstract
    • Synthesis of colloidal nanocrystals of II-VI semiconductor materials has been refined in recent decades and their size dependent optoelectronic properties have been well established. Here we report a facile synthesis of CdSe-CdS core-shell heterostructures using a two-step hot injection process. Red-shifts in absorption and photoluminescence spectra show that the obtained quantum dots have quasi-type-II alignment of energy levels. The obtained nanocrystals have a heterostructure with a large and highly faceted tetrahedral CdS shell grown epitaxially over a spherical CdSe core. The obtained morphology as well as high resolution electron microscopy confirms that the tetrahedral shell have a zinc blende crystal structure. A phenomenological mechanism for the growth and morphology of the nanocrystals is discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy