SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sun Chuanxin) srt2:(2000-2004)"

Sökning: WFRF:(Sun Chuanxin) > (2000-2004)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Baguma, Yona, et al. (författare)
  • Expression patterns of the gene encoding starch branching enzyme II in the storage roots of cassava (Manihot esculenta Crantz)
  • 2003
  • Ingår i: Plant Science. - 0168-9452 .- 1873-2259. ; 164:5, s. 833-839
  • Tidskriftsartikel (refereegranskat)abstract
    • Spatial and temporal expression patterns of the sbeII and sbeI genes, encoding starch branching enzyme II and I, respectively, in cassava (Manihot esculenta Crantz) were studied at different phenological stages of the crop. A partial cDNA for sbeII in cassava was cloned and used along with a cDNA-specific fragment of sbeI. As the cassava plant aged, the transcriptional activity of the sbeII and sbeI genes in the underground storage roots increased, whereas the activity in other organs remained the same or declined. At 180 days after planting (d.a.p.), levels of sbeII and sbeI transcripts in storage roots were very low, whereas at 360 d.a.p., the levels had increased dramatically. The 360 d.a.p. old storage roots also accumulated gbssII and gbssI transcripts, as well as a longer gbssI transcript, gbssI′. The difference between the gbssI and gbssI′ transcripts was shown to be due to differential splicing, whereby the gbssI′ transcript retained the first three introns. Unexpectedly, expression of sbeII and sbeI in the 360 d.a.p. storage roots exhibited fluctuations during the 24 h cycle, both under the normal light/dark regime and under continuous light or continuous dark conditions.
  •  
2.
  • Mutisya, Joel, et al. (författare)
  • Starch branching enzymes in sorghum (Sorghum bicolor) and barley (Hordeum vulgare) : Comparative analyses of enzyme structure and gene expression
  • 2003
  • Ingår i: Journal of plant physiology (Print). - : Elsevier BV. - 0176-1617 .- 1618-1328. ; 160:8, s. 921-930
  • Tidskriftsartikel (refereegranskat)abstract
    • Summary A genomic clone for starch branching enzyme (SBE) IIb was isolated from a sorghum bacterial artificial chromosome (BAC) library. The promoter and 5′ flanking sequence, the first four exons and introns as well as the last exon and the 3′ untranslated region were sequenced. The tentative transcription start site of sorghum sbeIIb was mapped based on alignment with the maize sbeIIb gene. The exon-intron structure of the 5′ portion of sorghum sbeIIb was similar to that of maize sbeIIb but differed from that of barley sbeIIb. Specifically, the intronic Bbl element involved in the endosperm specific expression of barley sbeIIb was lacking in the sorghum gene. A cDNA clone for sorghum sbeIIb was reverse PCR amplified and found to encode an 803 amino acids long protein. The amino acid sequence of sorghum SBEIIb was compared to that of sorghum SBEI and corresponding enzymes in barley. The overall identity in amino acid sequence was 54 percnt; in the central portion of the enzymes. A major difference between the SBEII and SBEI isoforms was a 67 amino acids-long C-terminal extension in the SBEIs. The spatial and temporal expression patterns of sorghum sbeIIb was determined and compared with those of the sorghum gene for SBEI and the barley genes for SBEIIB and SBEI. All four genes exhibited a seed specific expression. However, while barley sbeIIb and sbeI transcripts were detected exclusively in the endosperm, the sorghum genes were expressed also in the embryo. The activity of sorghum sbeIIb and sbeI exhibited a late onset, with a peak of transcription at around 22 days after pollination. This is similar to the pattern of barley sbeI but different from that of barley sbeIIb, which showed a peak of transcription at 12 days after pollination.
  •  
3.
  • Sun, Chuanxin, et al. (författare)
  • A Novel WRKY Transcription Factor, SUSIBA2, Participates in Sugar Signaling in Barley by Binding to the Sugar-Responsive Elements of the iso1 Promoter
  • 2003
  • Ingår i: The Plant Cell. ; 15:9, s. 2076-2092
  • Tidskriftsartikel (refereegranskat)abstract
    • SURE (sugar responsive) is a cis element in plant sugar signaling. The SURE element was reported first for potato, in which it confers sugar responsiveness to the patatin promoter. A SURE binding transcription factor has not been isolated. We have isolated a transcription factor cDNA from barley and purified the corresponding protein. The transcription factor, SUSIBA2 (sugar signaling in barley), belongs to the WRKY proteins and was shown to bind to SURE and W-box elements but not to the SP8a element in the iso1 promoter. Nuclear localization of SUSIBA2 was demonstrated in a transient assay system with a SUSIBA2:green fluorescent protein fusion protein. Exploiting the novel transcription factor oligodeoxynucleotide decoy strategy with transformed barley endosperm provided experimental evidence for the importance of the SURE elements in iso1 transcription. Antibodies against SUSIBA2 were produced, and the expression pattern for susiba2 was determined at the RNA and protein levels. It was found that susiba2 is expressed in endosperm but not in leaves. Transcription of susiba2 is sugar inducible, and ectopic susiba2 expression was obtained in sugar-treated leaves. Likewise, binding to SURE elements was observed for nuclear extracts from sugar-treated but not from control barley leaves. The temporal expression of susiba2 in barley endosperm followed that of iso1 and endogenous sucrose levels, with a peak at similar to12 days after pollination. Our data indicate that SUSIBA2 binds to the SURE elements in the barley iso1 promoter as an activator. Furthermore, they show that SUSIBA2 is a regulatory transcription factor in starch synthesis and demonstrate the involvement of a WRKY protein in carbohydrate anabolism. Orthologs to SUSIBA2 were isolated from rice and wheat endosperm.; SURE (sugar responsive) is a cis element in plant sugar signaling. The SURE element was reported first for potato, in which it confers sugar responsiveness to the patatin promoter. A SURE binding transcription factor has not been isolated. We have isolated a transcription factor cDNA from barley and purified the corresponding protein. The transcription factor, SUSIBA2 (sugar signaling in barley), belongs to the WRKY proteins and was shown to bind to SURE and W-box elements but not to the SP8a element in the iso1 promoter. Nuclear localization of SUSIBA2 was demonstrated in a transient assay system with a SUSIBA2:green fluorescent protein fusion protein. Exploiting the novel transcription factor oligodeoxynucleotide decoy strategy with transformed barley endosperm provided experimental evidence for the importance of the SURE elements in iso1 transcription. Antibodies against SUSIBA2 were produced, and the expression pattern for susiba2 was determined at the RNA and protein levels. It was found that susiba2 is expressed in endosperm but not in leaves. Transcription of susiba2 is sugar inducible, and ectopic susiba2 expression was obtained in sugar-treated leaves. Likewise, binding to SURE elements was observed for nuclear extracts from sugar-treated but not from control barley leaves. The temporal expression of susiba2 in barley endosperm followed that of iso1 and endogenous sucrose levels, with a peak at approximately 12 days after pollination. Our data indicate that SUSIBA2 binds to the SURE elements in the barley iso1 promoter as an activator. Furthermore, they show that SUSIBA2 is a regulatory transcription factor in starch synthesis and demonstrate the involvement of a WRKY protein in carbohydrate anabolism. Orthologs to SUSIBA2 were isolated from rice and wheat endosperm.; SURE (sugar responsive) is a cis element in plant sugar signaling. The SURE element was reported first for potato, in which it confers sugar responsiveness to the patatin promoter. A SURE binding transcription factor has not been isolated. We have isolated a transcription factor cDNA from barley and purified the corresponding protein. The transcription factor, SUSIBA2 (sugar signaling in barley), belongs to the WRKY proteins and was shown to bind to SURE and W-box elements but not to the SP8a element in the iso1 promoter. Nuclear localization of SUSIBA2 was demonstrated in a transient assay system with a SUSIBA2:green fluorescent protein fusion protein. Exploiting the novel transcription factor oligodeoxynucleotide decoy strategy with transformed barley endosperm provided experimental evidence for the importance of the SURE elements in iso1 transcription. Antibodies against SUSIBA2 were produced, and the expression pattern for susiba2 was determined at the RNA and protein levels. It was found that susiba2 is expressed in endosperm but not in leaves. Transcription of susiba2 is sugar inducible, and ectopic susiba2 expression was obtained in sugar-treated leaves. Likewise, binding to SURE elements was observed for nuclear extracts from sugar-treated but not from control barley leaves. The temporal expression of susiba2 in barley endosperm followed that of iso1 and endogenous sucrose levels, with a peak at similar to 12 days after pollination. Our data indicate that SUSIBA2 binds to the SURE elements in the barley iso1 promoter as an activator. Furthermore, they show that SUSIBA2 is a regulatory transcription factor in starch synthesis and demonstrate the involvement of a WRKY protein in carbohydrate anabolism. Orthologs to SUSIBA2 were isolated from rice and wheat endosperm.; SURE (sugar responsive) is a cis element in plant sugar signaling. The SURE element was reported first for potato, in which it confers sugar responsiveness to the patatin promoter. A SURE binding transcription factor has not been isolated. We have isolated a transcription factor cDNA from barley and purified the corresponding protein. The transcription factor, SUSIBA2 (sugar signaling in barley), belongs to the WRKY proteins and was shown to bind to SURE and W-box elements but not to the SP8a element in the iso1 promoter. Nuclear localization of SUSIBA2 was demonstrated in a transient assay system with a SUSIBA2:green fluorescent protein fusion protein. Exploiting the novel transcription factor oligodeoxynucleotide decoy strategy with transformed barley endosperm provided experimental evidence for the importance of the SURE elements in iso1 transcription. Antibodies against SUSIBA2 were produced, and the expression pattern for susiba2 was determined at the RNA and protein levels. It was found that susiba2 is expressed in endosperm but not in leaves. Transcription of susiba2 is sugar inducible, and ectopic susiba2 expression was obtained in sugar-treated leaves. Likewise, binding to SURE elements was observed for nuclear extracts from sugar-treated but not from control barley leaves. The temporal expression of susiba2 in barley endosperm followed that of iso1 and endogenous sucrose levels, with a peak at ∌12 days after pollination. Our data indicate that SUSIBA2 binds to the SURE elements in the barley iso1 promoter as an activator. Furthermore, they show that SUSIBA2 is a regulatory transcription factor in starch synthesis and demonstrate the involvement of a WRKY protein in carbohydrate anabolism. Orthologs to SUSIBA2 were isolated from rice and wheat endosperm.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy