SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sun Shi Gang) srt2:(2020-2023)"

Sökning: WFRF:(Sun Shi Gang) > (2020-2023)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Park, Jong-Sun, et al. (författare)
  • Transpolar Arcs During a Prolonged Radial Interplanetary Magnetic Field Interval
  • 2021
  • Ingår i: Journal of Geophysical Research - Space Physics. - : John Wiley & Sons. - 2169-9380 .- 2169-9402. ; 126:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Transpolar arcs (TPAs) are believed to predominantly occur under northward interplanetary magnetic field (IMF) conditions with their hemispheric asymmetry controlled by the Sun-Earth (radial) component of the IMF. In this study, we present observations of TPAs that appear in both the northern and southern hemispheres even during a prolonged interval of radially oriented IMF. The Defense Meteorological Satellite Program (DMSP) F16 and the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellites observed TPAs on the dawnside polar cap in both hemispheres (one TPA structure in the southern hemisphere and two in the northern hemisphere) during an interval of nearly earthward-oriented IMF on October 29, 2005. The southern hemisphere TPA and one of the northern hemisphere TPAs are associated with electron and ion precipitation and mostly sunward plasma flow (with shears) relative to their surroundings. Meanwhile, the other TPA in the northern hemisphere is associated with an electron-only precipitation and antisunward flow relative to its surroundings. Our observations indicate the following: (a) the TPA formation is not limited to northward IMF conditions; (b) the TPAs can be located on both closed field lines rooted in the polar cap of both hemispheres and open field lines connected to the northward field lines draped over one hemisphere of the magnetopause. We believe that the TPAs presented here are the result of both indirect and direct processes of solar wind energy transfer to the high-latitude ionosphere.
  •  
2.
  •  
3.
  • Qiu, Chun-Yu, et al. (författare)
  • Revealing the concentration of hydrogen peroxide in fuel cell catalyst layers by an in-operando approach
  • 2022
  • Ingår i: Chinese Journal of Catalysis. - 1872-2067. ; 43:7, s. 1918-1926
  • Tidskriftsartikel (refereegranskat)abstract
    • To evaluate the H2O2-tolerance of non-Pt oxygen reduction reaction (ORR) catalysts as well as investigate the H2O2-induced decay mechanism, the selection of an appropriate H2O2 concentration is a prerequisite. However, the concentration criterion is still unclear because of the lack of in-operando methods to determine the actual concentration of H2O2 in fuel cell catalyst layers. In this work, an electrochemical probe method was successfully established to in-operando monitor the H2O2 in non-Pt catalyst layers for the first time. The local concentration of H2O2 was revealed to reach 17 mmol/L, which is one order of magnitude higher than that under aqueous electrodes test conditions. Powered by the new knowledge, a concentration criterion of at least 17 mmol/L is suggested. This work fills in the large gap between aqueous electrode tests and the real fuel cell working conditions, and highlights the importance of in-operando monitoring methods.
  •  
4.
  • Sun, Xiao-dong, et al. (författare)
  • Implementing a novel capture and ligation probe-PCR method in mass screen and treatment to support malaria elimination efforts in the China-Myanmar border region
  • 2023
  • Ingår i: Malaria Journal. - : BioMed Central (BMC). - 1475-2875. ; 22:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundMass screening and treatment (MSAT) for malaria elimination lacks an ideal diagnostic tool to allow sensitive and affordable test of the target population in the field. This study evaluated whether Capture and Ligation Probe-PCR (CLIP-PCR) could be used in a field MSAT in Laiza City, Myanmar.MethodsOn day 0, two dried blood spots were collected from each participant. On day 1, all samples were screened for Plasmodium in a 20 m(2) laboratory with workbench, a biosafety cabinet, a refrigerator, a benchtop shaking incubator and a qPCR machine, by four technicians using CLIP-PCR with sample pooling, at a health clinic of the Chinese bordering town of Nabang. On day 2, all positives were followed up and treated.ResultsOf 15,038 persons (65% of the total population) screened, 204 (1.36%) were CLIP-PCR positives. Among them, 188, 14, and 2 were infected with Plasmodium vivax, Plasmodium falciparum, and P. vivax/P. falciparum mix, respectively. The testing capacity was 538 persons/day, with a cost of US$0.92 /person. The proportion of submicroscopic infection was 64.7%. All positive individuals received treatment within 72 h after blood collection.ConclusionUsing CLIP-PCR in MSAT in low transmission settings can support the malaria elimination efforts in the China-Myanmar border region.
  •  
5.
  • Wan, Liyang, et al. (författare)
  • Molecular Degradation of Iron Phthalocyanine during the Oxygen Reduction Reaction in Acidic Media
  • 2022
  • Ingår i: ACS Catalysis. - : American Chemical Society (ACS). - 2155-5435. ; 12:18, s. 11097-11107
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular iron phthalocyanine (FePc) possesses an FeN4 active site structure similar to practical pyrolyzed Fe/N/C catalysts for the acidic oxygen reduction reaction (ORR), making it an ideal model system to derive the degradation mechanism of such catalysts. However, the degradation mechanism of FePc during the acidic ORR has been largely unclear to date. Herein, five most likely degradation factors affecting FePc-based ORR activity are individually investigated and compared. The attack by free radicals is found to be the main reason for the instability of FePc. Assisted by the combination of several spectroscopic methods, we successfully identify the degradation products and then propose a full structural evolution of molecular FePc degradation. Finally, high similarity in the decay mechanism between molecular FePc and practical Fe/N/C catalysts was present. This study provides a clear picture of the currently missing degradation mechanism of molecular FePc during acidic ORR, which will assist future investigations on the performance degradation of practical Fe/N/C catalysts.
  •  
6.
  • Xu, Hui, et al. (författare)
  • Impact of Pore Structure on Two-Electron Oxygen Reduction Reaction in Nitrogen-Doped Carbon Materials : Rotating Ring-Disk Electrode vs. Flow Cell
  • 2022
  • Ingår i: ChemSusChem. - : Wiley. - 1864-5631 .- 1864-564X. ; 15:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The impact of pore structure on the two-electron oxygen reduction reaction (ORR) in nitrogen-doped carbon materials is currently under debate, and previous studies are mainly limited to the rotating ring-disk electrode (RRDE) rather than the practical flow cell (FC) system. In this study, assisted by a group of reliable pore models, the impact of two pore structure parameters, that is, Brunauer–Emmett–Teller surface area (SBET) and micropore surface fraction (fmicro), on ORR activity and selectivity are investigated in both RRDE and FC. The ORR mass activity correlates positively to the SBET in the RRDE and FC because a higher SBET can host more active sites. The H2O2 selectivity is independent of fmicro in the RRDE but correlates negatively to fmicro in the FC. The inconsistency results from different states of the electrode in the RRDE and the FC. These insights will guide the design of carbon materials for H2O2 synthesis.
  •  
7.
  • Xu, Weicheng, et al. (författare)
  • Nitrogen doping to accelerate the phase transition to ordered intermetallic Pt3Co catalyst for the oxygen reduction reaction in fuel cells
  • 2023
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 11:8, s. 4078-4087
  • Tidskriftsartikel (refereegranskat)abstract
    • Ordered intermetallic Pt–M alloys are foreseen to be promising as next-generation low-Pt catalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs) due to their high catalytic activity and stability. Nevertheless, the disorder-to-order intermetallic phase transition often needs to proceed at elevated annealing temperature for a long time, which leads to severe particle agglomeration. Herein, an efficient nitrogen (N)-doping strategy is developed to speed up such phase transition in an intermetallic Pt3Co alloy catalyst, which shortens the annealing duration by 3–5 fold at a temperature of 600–800 °C. Such a strategy can not only minimize the particle agglomeration but also effectively optimize the electronic structure of surface Pt atoms with the incorporated N. The prepared N-doped ordered intermetallic Pt3Co catalyst exhibits high ORR activity among the best of the state-of-the-art, with mass activities of 1.21 and 1.20 A mgPt−1 at 0.90 V in rotating disk electrode (RDE) and proton exchange membrane fuel cell (PEMFC) tests, respectively. Moreover, with the total Pt loading of 0.15 mgPt cm−2, the H2–air PEMFC delivers a power density of 1.27 W cm−2 at 150 kPaabs and 0.6 V, corresponding to a high Pt utilization of 0.118 gPt kW−1 that has surpassed the DOE 2025 target (0.125 gPt kW−1). This study paves a new way to develop high-performance low-Pt ORR catalysts for PEMFCs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy