SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sun Yanyan) srt2:(2011-2014)"

Sökning: WFRF:(Sun Yanyan) > (2011-2014)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Du, Xiaonan, et al. (författare)
  • Systemic stimulation of TLR2 impairs neonatal mouse brain development.
  • 2011
  • Ingår i: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 6:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Inflammation is associated with perinatal brain injury but the underlying mechanisms are not completely characterized. Stimulation of Toll-like receptors (TLRs) through specific agonists induces inflammatory responses that trigger both innate and adaptive immune responses. The impact of engagement of TLR2 signaling pathways on the neonatal brain is still unclear. The aim of this study was to investigate the potential effect of a TLR2 agonist on neonatal brain development.
  •  
2.
  • Han, Wei, et al. (författare)
  • Delayed, Long-Term Administration of the Caspase Inhibitor Q-VD-OPh Reduced Brain Injury Induced by Neonatal Hypoxia-Ischemia.
  • 2014
  • Ingår i: Developmental neuroscience. - : S. Karger AG. - 1421-9859 .- 0378-5866. ; 36:1, s. 64-72
  • Tidskriftsartikel (refereegranskat)abstract
    • Apoptosis contributes greatly to the morphological and biochemical features of cell death after neonatal cerebral hypoxia-ischemia (HI), making this mode of cell death a promising therapeutic target. We previously showed that 10 mg/kg of the caspase inhibitor Q-VD-OPh at the onset of and immediately after HI on postnatal day 9 reduced brain infarct volume. In this study, delayed administration of Q-VD-OPh, 12 and 36 h after HI, decreased HI-induced caspase-3 activity (DEVD cleavage) by 23% and diminished the levels of the proinflammatory chemokines CCL2 (MCP-1) and CCL3 (MIP-1α) by 29.3 and 29.1%, respectively, but not the levels of the anti-inflammatory cytokines IL-4 and IL-10. Long-term administration of Q-VD-OPh initiated at 12 h after HI, and continued at 24-hour intervals for 2 weeks, reduced total brain tissue loss by 31.3% from 41.5 ± 3.1 mm(3) in the vehicle group to 28.5 ± 3.0 mm(3) in the Q-VD-OPh group when evaluated 16 weeks after HI (p = 0.004). Q-VD-OPh treatment also ameliorated the loss of sensorimotor function, as evaluated by a cylinder rearing test (Q-VD-OPh: 30.8 ± 4.3% vs. vehicle: 59.7 ± 6.3% in nonimpaired forepaw preference) 3 weeks after HI, and reduced HI-induced hyperactivity, as measured in an open field test (Q-VD-OPh: 4,062 ± 198 cm vs. vehicle: 4,792 ± 205 cm in distance moved) 7 weeks after the insult. However, the functional protection was no longer observed when analyzed again at later time points. The mechanisms underlying the discrepancy between sustained morphological protection and transient functional protection remain to be elucidated. © 2014 S. Karger AG, Basel.
  •  
3.
  • Huo, Kaiming, et al. (författare)
  • Lithium reduced neural progenitor apoptosis in the hippocampus and ameliorated functional deficits after irradiation to the immature mouse brain.
  • 2012
  • Ingår i: Molecular and cellular neurosciences. - : Elsevier BV. - 1095-9327 .- 1044-7431. ; 51:1-2, s. 32-42
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium was recently shown to inhibit apoptosis and promote survival of neural progenitor cells after hypoxia-ischemia in the immature rat brain. Our aim was to evaluate the effects of lithium on cell death and proliferation in the hippocampus after irradiation (IR) to the immature brain. Male mice were injected with 2 mmol/kg lithium chloride i.p. on postnatal day 9 (P9) and additional lithium injections, 1 mmol/kg, were administered at 24 h intervals for up to 7 days. BrdU was injected 4 h after lithium injections on P9 and P10. The left hemisphere received a single dose of 8 Gy (MV photons) on P11. The animals were euthanized 6 h or 7 weeks after IR. The number of BrdU-labeled cells in the subgranular zone (SGZ) of the granule cell layer (GCL) 6h after IR was 24% higher in the lithium-treated mice. The number of proliferating, phospho-histone H3-positive cells in the SGZ 7 weeks after IR was 59% higher in the lithium group, so the effect was long-lasting. The number of apoptotic cells in the SGZ 6 h after IR was lower in the lithium group, as judged by 3 different parameters, pyknosis, staining for active caspase-3 and TUNEL. Newly formed cells (BrdU-labeled 1 or 2 days before IR) showed the greatest degree of protection, as judged by 50% fewer TUNEL-positive cells, whereas non-BrdU-labeled cells showed 38% fewer TUNEL-positive cells 6 h after IR. Consequently, the growth retardation of the GCL was less pronounced in the lithium group. The number and size of microglia in the DG were also lower in the lithium group, indicating reduced inflammation. Learning was facilitated after lithium treatment, as judged by improved context-dependent fear conditioning, and improved place learning, as judged by assessment in the IntelliCage platform. In summary, lithium administration could decrease IR-induced neural progenitor cell apoptosis in the GCL of the hippocampus and ameliorate learning impairments. It remains to be shown if lithium can be used to prevent the debilitating cognitive late effects seen in children treated with cranial radiotherapy.
  •  
4.
  • Li, Hongfu, et al. (författare)
  • Lithium-mediated long-term neuroprotection in neonatal rat hypoxia-ischemia is associated with antiinflammatory effects and enhanced proliferation and survival of neural stem/progenitor cells.
  • 2011
  • Ingår i: Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. - : SAGE Publications. - 1559-7016. ; 31:10, s. 2106-2115
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to evaluate the long-term effects of lithium treatment on neonatal hypoxic-ischemic brain injury, inflammation, and neural stem/progenitor cell (NSPC) proliferation and survival. Nine-day-old male rats were subjected to unilateral hypoxia-ischemia (HI) and 2mmol/kg lithium chloride was injected intraperitoneally immediately after the insult. Additional lithium injections, 1mmol/kg, were administered at 24-hour intervals for 7 days. Animals were killed 6, 24, 72hours, or 7 weeks after HI. Lithium reduced total tissue loss by 69%, from 89.4±14.6mm(3) in controls (n=15) to 27.6±6.2mm(3) in lithium-treated animals (n=14) 7 weeks after HI (P<0.001). Microglia activation was inhibited by lithium treatment, as judged by Iba-1 and galectin-3 immunostaining, and reduced interleukin-1β and CCL2 levels. Lithium increased progenitor, rather than stem cell, proliferation in both nonischemic and ischemic brains, as judged by 5-bromo-2-deoxyuridine labeling 24 and 72hours as well as by phospho-histone H3 and brain lipid-binding protein labeling 7 weeks after HI. Lithium treatment also promoted survival of newborn NSPCs, without altering the relative levels of neuronal and astroglial differentiation. In summary, lithium conferred impressive, morphological long-term protection against neonatal HI, at least partly by inhibiting inflammation and promoting NSPC proliferation and survival.Journal of Cerebral Blood Flow & Metabolism advance online publication, 18 May 2011; doi:10.1038/jcbfm.2011.75.
  •  
5.
  • Sun, Qiang, et al. (författare)
  • Varying High Levels of Faecal Carriage of Extended-Spectrum Beta-Lactamase Producing Enterobacteriaceae in Rural Villages in Shandong, China: Implications for Global Health
  • 2014
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 9:11, s. e113121-
  • Tidskriftsartikel (refereegranskat)abstract
    • Antibiotic resistance is considered a major threat to global health and is affected by many factors, of which antibiotic use is probably one of the more important. Other factors include hygiene, crowding and travel. The rapid resistance spread in Gram-negative bacteria, in particular extended-spectrum beta-lactamase (ESBL) producing Enterobacteriaceae (ESBL-E), is a global challenge, leading to increased mortality, morbidity and health systems costs worldwide. Knowledge about resistance in commensal flora is limited, including in China. Our aim was to establish the faecal carriage rates of ESBL-E and find its association with known and suspected risk factors in rural residents of all ages in three socio-economically different counties in the Shandong Province, China. Faecal samples and risk-factor information (questionnaire) were collected in 2012. ESBL-E carriage was screened using ChromID ESBL agar. Risk factors were analysed using standard statistical methods. Data from 1000 individuals from three counties and in total 18 villages showed a high and varying level of ESBL-E carriage. Overall, 42% were ESBL-E carriers. At county level the carriage rates were 49%, 45% and 31%, respectively, and when comparing individual villages (n = 18) the rate varied from 22% to 64%. The high level of ESBL-E carriage among rural residents in China is an indication of an exploding global challenge in the years to come as resistance spreads among bacteria and travels around the world with the movement of people and freight. A high carriage rate of ESBL-E increases the risk of infection with multi-resistant bacteria, and thus the need for usage of last resort antibiotics, such as carbapenems and colistin, in the treatment of common infections.
  •  
6.
  • Sun, Yanyan, et al. (författare)
  • Apoptosis-inducing factor downregulation increased neuronal progenitor, but not stem cell, survival in the neonatal hippocampus after cerebral hypoxiaischemia.
  • 2012
  • Ingår i: Molecular neurodegeneration. - : Springer Science and Business Media LLC. - 1750-1326. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT: BACKGROUND: A considerable proportion of all newly generated cells in the hippocampus will die before becoming fully differentiated, both under normal and pathological circumstances. The caspase-independent apoptosis-inducing factor (AIF) has not been investigated previously in this context. RESULTS: Postnatal day 8 (P8) harlequin (Hq) mutant mice, expressing lower levels of AIF, and wild type littermates were injected with BrdU once daily for two days to label newborn cells. On P10 mice were subjected to hypoxia-ischemia (HI) and their brains were analyzed 4 h, 24 h or 4 weeks later. Overall tissue loss was 63.5% lower in Hq mice 4 weeks after HI. Shortterm survival (4 h and 24 h) of labeled cells in the subgranular zone was neither affected by AIF downregulation, nor by HI. Long-term (4 weeks) survival of undifferentiated, BLBPpositive stem cells was reduced by half after HI, but this was not changed by AIF downregulation. Neurogenesis, however, as judged by BrdU/NeuN double labeling, was reduced by half after HI in wild type mice but preserved in Hq mice, indicating that primarily neural progenitors and neurons were protected. A wave of cell death started early after HI in the innermost layers of the granule cell layer (GCL) and moved outward, such that 24 h after HI dying cells could be detected in the entire GCL. CONCLUSIONS: These findings demonstrate that AIF downregulation provides not only long-term overall neuroprotection after HI, but also protects neural progenitor cells, thereby rescuing hippocampal neurogenesis.
  •  
7.
  • Zhu, Changlian, 1964, et al. (författare)
  • Inhaled nitric oxide protects males but not females from neonatal mouse hypoxia-ischemia brain injury
  • 2013
  • Ingår i: Translational Stroke Research. - : Springer Science and Business Media LLC. - 1868-4483 .- 1868-601X. ; 4:2, s. 201-207
  • Tidskriftsartikel (refereegranskat)abstract
    • It was recently discovered that while under normal conditions inhaled nitric oxide (iNO) does not affect cerebral blood flow, it selectively dilates arterioles in the ischemic penumbra during experimental cerebral ischemia, thereby increasing collateral blood flow and reducing ischemic brain damage. The mechanism was verified in multiple models, but only in male animals. Our aim was to evaluate the effects of iNO on brain injury in neonatal males and females. Nine-day-old mice were subjected to unilateral hypoxia–ischemia (HI), using 10 % oxygen balanced with nitrogen, with or without 50 ppm NO. Brain injury 72 h after HI was reduced by iNO as judged by percentage of injury (−21.7 %), atrophy (−23.7 %), and total pathological score (−29 %). The injury was significantly reduced in males (−32.4 %, p<0.05) but not in females (−7.1 %, n.s.). Neither the numbers nor the proliferation rates of neural stem cells in the dentate gyrus were affected by iNO. In summary, intraischemic iNO reduced neonatal HI brain injury in a gender-related manner.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy