SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sun Yanyan) srt2:(2015-2019)"

Sökning: WFRF:(Sun Yanyan) > (2015-2019)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • D'angelo, Barbara, et al. (författare)
  • GSK3β inhibition protects the immature brain from hypoxic-ischaemic insult via reduced STAT3 signalling
  • 2016
  • Ingår i: Neuropharmacology. - : Elsevier BV. - 0028-3908. ; 101, s. 13-23
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypoxic-ischaemic (HI) injury is an important cause of neurological morbidity in neonates. HI leads to pathophysiological responses, including inflammation and oxidative stress that culminate in cell death. Activation of glycogen synthase kinase 3β (GSK3β) and the signal transducer and activator of transcription (STAT3) promotes brain inflammation. The purpose of this study was to test whether inhibition of GSK3β signalling protects against neonatal HI brain injury. Mice were subjected to HI at postnatal day (PND) 9 and treated with a selective GSK3β inhibitor, SB216763. Brain injury and caspase-3 activation, anti-oxidant and inflammatory mRNA responses and activation of STAT3 were analysed. Our results show that HI reduced phosphorylation of GSK3β, thus promoting its kinase activity. The GSK3β inhibitor reduced caspase-3 activation and neuronal cell death elicited by HI and reverted the effects of HI on gene expression of the anti-oxidant enzyme sod2 and mitochondrial factor pgc1α. The HI insult activated STAT3 in glial cells and GSK3β inhibition attenuated STAT3 phosphorylation and its nuclear translocation following HI. Further, GSK3β inhibition reduced HI-induced gene expression of pro-inflammatory cytokines tnfα and Il-6, while promoted the anti-inflammatory factor Il-10. In summary, data show that GSK3β inhibition is neuroprotective in neonatal HI brain injury likely via reduced pro-inflammatory responses by blocking STAT3 signalling. Our study suggests that pharmacological interventions built upon GSK3β silencing strategies could represent a novel therapy in neonatal brain injury. © 2015 Elsevier Ltd. All rights reserved.
  •  
2.
  • Liu, Yanyan, et al. (författare)
  • Flowerlike CeO2 microspheres coated with Sr2Fe1.5Mo0.5Ox nanoparticles for an advanced fuel cell
  • 2015
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Flowerlike CeO2 coated with Sr(2)Fe(1.5)Mo(0.5)Ox (Sr-Fe-Mo-oxide) nanoparticles exhibits enhanced conductivity at low temperatures (300-600 degrees C), e.g. 0.12 S cm(-1) at 600 degrees C, this is comparable to pure ceria (0.1 S cm(-1) at 800 degrees C). Advanced single layer fuel cell was constructed using the flowerlike CeO2/Sr-Fe-Mo-oxide layer attached to a Ni-foam layer coated with the conducting transition metal oxide. Such fuel cell has yielded a peak power density of 802 mWcm(-2) at 550 degrees C. The mechanism of enhanced conductivity and cell performance were analyzed. These results provide a promising strategy for developing advanced low-temperature SOFCs.
  •  
3.
  • Rodriguez, Juan, 1983, et al. (författare)
  • Lack of the brain-specific isoform of apoptosis-inducing factor aggravates cerebral damage in a model of neonatal hypoxia-ischemia.
  • 2018
  • Ingår i: Cell Death & Disease. - : Springer Science and Business Media LLC. - 2041-4889. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Apoptosis-inducing factor (AIF) may contribute to neuronal cell death, and its influence is particularly prominent in the immature brain after hypoxia-ischemia (HI). A brain-specific AIF splice-isoform (AIF2) has recently been discovered, but has not yet been characterized at the genetic level. The aim of this study was to determine the functional and regulatory profile of AIF2 under physiological conditions and after HI in mice. We generated AIF2 knockout (KO) mice by removing the AIF2-specific exon and found that the relative expression of Aif1 mRNA increased in Aif2 KO mice and that this increase became even more pronounced as Aif2 KO mice aged compared to their wild-type (WT) littermates. Mitochondrial morphology and function, reproductive function, and behavior showed no differences between WT and Aif2 KO mice. However, lack of AIF2 enhanced brain injury in neonatal mice after HI compared to WT controls, and this effect was linked to increased oxidative stress but not to caspase-dependent or -independent apoptosis pathways. These results indicate that AIF2 deficiency exacerbates free radical production and HI-induced neonatal brain injury.
  •  
4.
  • Sun, Qiang, et al. (författare)
  • Overuse of antibiotics for the common cold - attitudes and behaviors among doctors in rural areas of Shandong Province, China
  • 2015
  • Ingår i: BMC Pharmacology & Toxicology. - : BioMed Central. - 2050-6511. ; 16:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Irrational antibiotic use is common in rural areas of China, despite the growing recognition of the importance of appropriate prescribing to contain antibiotic resistance. The aim of this study was to analyze doctors attitudes and prescribing practices related to antibiotics in rural areas of Shandong province, focusing on patients with the common cold. Methods: A survey was conducted with doctors working at thirty health facilities (village clinics, township health centers and county general hospitals) in three counties within Shandong province. Questions were included on knowledge and attitudes towards antibiotic prescribing. Separately, a random selection of prescriptions for patients with the common cold was collected from the healthcare institutions at which the doctors worked, to investigate actual prescribing behaviors. Results: A total of 188 doctors completed the survey. Most doctors (83%, 149/180) had attended training on antibiotic use since the beginning of their medical practice as a doctor, irrespective of the academic level of their undergraduate training. Of those that had training, most had attended it within the past three years (97%, 112/116). Very few doctors (2%, 3/187) said they would give antibiotics to a patient with symptoms of a common cold, and the majority (87%, 156/179) would refuse to prescribe an antibiotic even if patients were insistent on getting them. Doctors who had attended training were less likely to give antibiotics in this circumstance (29% vs. 14%, p less than 0.001). A diagnosis of common cold was the only diagnosis reported on 1590 out of 8400 prescriptions. Over half (55%, 869/1590) of them included an antibiotic. Prescriptions from village clinics were more likely to contain an antibiotic than those from other healthcare institutions (71% vs. 44% [township] vs. 47% [ county], p less than 0.001). Conclusions: Most doctors have recently attended training on antibiotic use and report they would not prescribe antibiotics for patients with a common cold, even when placed under pressure by patients. However, more than half of the prescriptions from these healthcare institutions for patients with the common cold included an antibiotic. Exploring and addressing gaps between knowledge and practice is critical to improving antibiotic use in rural China.
  •  
5.
  • Sun, Yanyan, et al. (författare)
  • Dichloroacetate treatment improves mitochondrial metabolism and reduces brain injury in neonatal mice
  • 2016
  • Ingår i: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 7:22, s. 31708-31722
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this study was to evaluate the effect of dichloroacetate (DCA) treatment for brain injury in neonatal mice after hypoxia ischemia (HI) and the possible molecular mechanisms behind this effect. Postnatal day 9 male mouse pups were subjected to unilateral HI, DCA was injected intraperitoneally immediately after HI, and an additional two doses were administered at 24 h intervals. The pups were sacrificed 72 h after HI. Brain injury, as indicated by infarction volume, was reduced by 54.2% from 10.8 +/- 1.9 mm(3) in the vehicle-only control group to 5.0 +/- 1.0 mm(3) in the DCA-treated group at 72 h after HI (p = 0.008). DCA treatment also significantly reduced subcortical white matter injury as indicated by myelin basic protein staining (p = 0.018). Apoptotic cell death in the cortex, as indicated by counting the cells that were positive for apoptosis-inducing factor (p = 0.018) and active caspase-3 (p = 0.021), was significantly reduced after DCA treatment. The pyruvate dehydrogenase activity and the amount of acetyl-CoA in mitochondria was significantly higher after DCA treatment and HI (p = 0.039, p = 0.024). In conclusion, DCA treatment reduced neonatal mouse brain injury after HI, and this appears to be related to the elevated activation of pyruvate dehydrogenase and subsequent increase in mitochondrial metabolism as well as reduced apoptotic cell death.
  •  
6.
  • Sun, Yanyan, et al. (författare)
  • Haploinsufficiency in the mitochondrial protein CHCHD4 reduces brain injury in a mouse model of neonatal hypoxia-ischemia
  • 2017
  • Ingår i: Cell Death & Disease. - : Springer Science and Business Media LLC. - 2041-4889. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Mitochondria contribute to neonatal hypoxic-ischemic brain injury by releasing potentially toxic proteins into the cytosol. CHCHD4 is a mitochondrial intermembrane space protein that plays a major role in the import of intermembrane proteins and physically interacts with apoptosis-inducing factor (AIF). The purpose of this study was to investigate the impact of CHCHD4 haploinsufficiency on mitochondrial function and brain injury after cerebral hypoxia-ischemia (HI) in neonatal mice. CHCHD4(+/-) and wild-type littermate mouse pups were subjected to unilateral cerebral HI on postnatal day 9. CHCHD4 haploinsufficiency reduced insult-related AIF and superoxide dismutase 2 release from the mitochondria and reduced neuronal cell death. The total brain injury volume was reduced by 21.5% at 3 days and by 31.3% at 4 weeks after HI in CHCHD4(+/-) mice. However, CHCHD4 haploinsufficiency had no influence on mitochondrial biogenesis, fusion, or fission; neural stem cell proliferation; or neural progenitor cell differentiation. There were no significant changes in the expression or distribution of p53 protein or p53 pathway-related genes under physiological conditions or after HI. These results suggest that CHCHD4 haploinsufficiency afforded persistent neuroprotection related to reduced release of mitochondrial intermembrane space proteins. The CHCHD4-dependent import pathway might thus be a potential therapeutic target for preventing or treating neonatal brain injury.
  •  
7.
  • Wang, Yafeng, 1985, et al. (författare)
  • Inhibition of autophagy prevents irradiation-induced neural stem and progenitor cell death in the juvenile mouse brain
  • 2017
  • Ingår i: Cell Death & Disease. - : Springer Science and Business Media LLC. - 2041-4889. ; 8:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Radiotherapy is an effective tool in the treatment of malignant brain tumors. However, damage to brain stem and progenitor cells constitutes a major problem and is associated with long-term side effects. Autophagy has been shown to be involved in cell death, and the purpose of this study was to evaluate the effect of autophagy inhibition on neural stem and progenitor cell death in the juvenile brain. Ten-day-old selective Atg7 knockout (KO) mice and wild-type (WT) littermates were subjected to a single 6Gy dose of whole-brain irradiation. Cell death and proliferation as well as microglia activation and inflammation were evaluated in the dentate gyrus of the hippocampus and in the cerebellum at 6 h after irradiation. We found that cell death was reduced in Atg7 KO compared with WT mice at 6 h after irradiation. The number of activated microglia increased significantly in both the dentate gyrus and the cerebellum of WT mice after irradiation, but the increase was lower in the Atg7 KO mice. The levels of proinflammatory cytokines and chemokines decreased, especially in the cerebellum, in the Atg7 KO group. These results suggest that autophagymight be a potential target for preventing radiotherapy-induced neural stem and progenitor cell death and its associated long-term side effects.
  •  
8.
  • Wang, Yafeng, 1985, et al. (författare)
  • Selective Neural Deletion of the Atg7 Gene Reduces Irradiation-Induced Cerebellar White Matter Injury in the Juvenile Mouse Brain by Ameliorating Oligodendrocyte Progenitor Cell Loss
  • 2019
  • Ingår i: Frontiers in Cellular Neuroscience. - : Frontiers Media SA. - 1662-5102. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Radiotherapy is an effective tool for treating brain tumors, but irradiation-induced toxicity to the normal brain tissue remains a major problem. Here, we investigated if selective neural autophagy related gene 7 (Atg7) deletion has a persistent effect on irradiation-induced juvenile mouse brain injury. Ten-day-old Atg7 knockout under a nestin promoter (KO) mice and wild-type (WT) littermates were subjected to a single dose of 6 Gy whole-brain irradiation. Cerebellar volume, cell proliferation, microglia activation, inflammation, and myelination were evaluated in the cerebellum at 5 days after irradiation. We found that neural Atg7 deficiency partially prevented myelin disruption compared to the WT mice after irradiation, as indicated by myelin basic protein staining. Irradiation induced oligodendrocyte progenitor cell (OPC) loss in the white matter of the cerebellum, and Atg7 deficiency partly prevented this. The mRNA expression of oligodendrocyte and myelination-related genes (Olig2, Cldn11, CNP, and MBP) was higher in the cerebellum in Atg7 KO mice compared with WT littermates. The total cerebellar volume was significantly reduced after irradiation in both Atg7 KO and WT mice. Atg7-deficient cerebellums were in a regenerative state before irradiation, as judged by the increased OPC-related and neurogenesis-related transcripts and the increased numbers of microglia; however, except for the OPC parameters these were the same in both genotypes after irradiation. Finally, there was no significant change in the number of astrocytes in the cerebellum after irradiation. These results suggest that selective neural Atg7 deficiency reduces irradiation-induced cerebellar white matter injury in the juvenile mouse brain, secondary to prevention of OPC loss.
  •  
9.
  • Xie, Cuicui, et al. (författare)
  • Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury
  • 2016
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8627 .- 1554-8635. ; 12:2, s. 410-423
  • Tidskriftsartikel (refereegranskat)abstract
    • Perinatal asphyxia induces neuronal cell death and brain injury, and is often associated with irreversible neurological deficits in children. There is an urgent need to elucidate the neuronal death mechanisms occurring after neonatal hypoxia-ischemia (HI). We here investigated the selective neuronal deletion of the Atg7 (autophagy related 7) gene on neuronal cell death and brain injury in a mouse model of severe neonatal hypoxia-ischemia. Neuronal deletion of Atg7 prevented HI-induced autophagy, resulted in 42% decrease of tissue loss compared to wild-type mice after the insult, and reduced cell death in multiple brain regions, including apoptosis, as shown by decreased caspase-dependent and -independent cell death. Moreover, we investigated the lentiform nucleus of human newborns who died after severe perinatal asphyxia and found increased neuronal autophagy after severe hypoxic-ischemic encephalopathy compared to control uninjured brains, as indicated by the numbers of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3)-, LAMP1 (lysosomal-associated membrane protein 1)-, and CTSD (cathepsin D)-positive cells. These findings reveal that selective neuronal deletion of Atg7 is strongly protective against neuronal death and overall brain injury occurring after HI and suggest that inhibition of HI-enhanced autophagy should be considered as a potential therapeutic target for the treatment of human newborns developing severe hypoxic-ischemic encephalopathy.
  •  
10.
  • Xu, Jianhua, et al. (författare)
  • A Variant of the Autophagy-Related 5 Gene is Associated with Child Cerebral Palsy
  • 2017
  • Ingår i: Frontiers in Cellular Neuroscience. - : Frontiers Media SA. - 1662-5102. ; 18
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebral palsy (CP) is a major cause of childhood disability in developed and developing countries, but the pathogenic mechanisms of CP development remain largely unknown. Autophagy is a highly conserved cellular self-digestion of damaged organelles and dysfunctional macromolecules. Growing evidence suggests that autophagy-related gene 5 (ATG5)-dependent autophagy is involved in neural development, neuronal differentiation, and neurological degenerative diseases. The aim of this study was to analyze ATG5 protein expression and gene polymorphisms in Chinese patients with CP and to evaluate the importance of ATG5 in the development of CP. Five polymorphisms from different regions of the ATG5 gene (rs510432, rs3804338, rs573775, rs2299863, and rs6568431) were analyzed in 715 CP patients and 658 controls using MassARRAY. Of these, 58 patients and 56 controls were selected for measurement of plasma ATG5 level using ELISA. The relevance of disease-associated SNPs was evaluated using the SHEsis program. We identified a significant association between rs6568431 and CP (OR = 1.388, 95% CI = 1.173∼1.643, Pallele = 0.0005, Pgenotype = 0.0015). Subgroup analysis showed a highly significant association of rs6568431 with spastic CP (n = 468, OR = 1.511, 95% CI = 1.251∼1.824, Pallele = 8.50e−005, Pgenotype = 1.57e−004) and spastic quadriplegia (OR = 1.927, 95% CI = 1.533∼2.421, Pallele = 7.35e−008, Pgenotype = 3.24e−009). Furthermore, mean plasma ATG5 levels were lower in CP patients than in controls, and individuals carrying the AA genotype of rs6568431 that was positively associated with CP had lower plasma ATG5 levels (P < 0.05). This study demonstrated an association of an ATG5 gene variant and low level of ATG5 protein with CP, and stronger associations with severe clinical manifestations were identified. Our results provide novel evidence for a role of ATG5 in CP and shed light on the molecular mechanisms underlying this neurodevelopmental disorder.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy