SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sundblad M) srt2:(2000-2004)"

Search: WFRF:(Sundblad M) > (2000-2004)

  • Result 1-10 of 19
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Rohdin, M, et al. (author)
  • Effects of gravity on lung diffusing capacity and cardiac output in prone and supine humans.
  • 2003
  • In: Journal of applied physiology. - : American Physiological Society. - 8750-7587 .- 1522-1601. ; 95:1, s. 3-10
  • Journal article (peer-reviewed)abstract
    • Both in normal subjects exposed to hypergravity and in patients with acute respiratory distress syndrome, there are increased hydrostatic pressure gradients down the lung. Also, both conditions show an impaired arterial oxygenation, which is less severe in the prone than in the supine posture. The aim of this study was to use hypergravity to further investigate the mechanisms behind the differences in arterial oxygenation between the prone and the supine posture. Ten healthy subjects were studied in a human centrifuge while exposed to 1 and 5 times normal gravity (1 G, 5 G) in the anterioposterior (supine) and posterioanterior (prone) direction. They performed one rebreathing maneuver after approximately 5 min at each G level and posture. Lung diffusing capacity decreased in hypergravity compared with 1 G (ANOVA, P = 0.002); it decreased by 46% in the supine posture compared with 25% in the prone (P = 0.01 for supine vs. prone). At the same time, functional residual capacity decreased by 33 and 23%, respectively (P < 0.001 for supine vs. prone), and cardiac output by 40 and 31% (P = 0.007 for supine vs. prone), despite an increase in heart rate of 16 and 28% (P < 0.001 for supine vs. prone), respectively. The finding of a more impaired diffusing capacity in the supine posture compared with the prone at 5 G supports our previous observations of more severe arterial hypoxemia in the supine posture during hypergravity. A reduced pulmonary-capillary blood flow and a reduced estimated alveolar volume can explain most of the reduction in diffusing capacity when supine.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view