SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sundqvist Maja K.) srt2:(2020-2022)"

Sökning: WFRF:(Sundqvist Maja K.) > (2020-2022)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lindén, Elin, et al. (författare)
  • Circum-Arctic distribution of chemical anti-herbivore compounds suggests biome-wide trade-off in defence strategies in Arctic shrubs
  • 2022
  • Ingår i: Ecography. - : John Wiley & Sons. - 0906-7590 .- 1600-0587. ; :11
  • Tidskriftsartikel (refereegranskat)abstract
    • Spatial variation in plant chemical defence towards herbivores can help us understand variation in herbivore top–down control of shrubs in the Arctic and possibly also shrub responses to global warming. Less defended, non-resinous shrubs could be more influenced by herbivores than more defended, resinous shrubs. However, sparse field measurements limit our current understanding of how much of the circum-Arctic variation in defence compounds is explained by taxa or defence functional groups (resinous/non-resinous). We measured circum-Arctic chemical defence and leaf digestibility in resinous (Betula glandulosa, B. nana ssp. exilis) and non-resinous (B. nana ssp. nana, B. pumila) shrub birches to see how they vary among and within taxa and functional groups. Using liquid chromatography–mass spectrometry (LC–MS) metabolomic analyses and in vitro leaf digestibility via incubation in cattle rumen fluid, we analysed defence composition and leaf digestibility in 128 samples from 44 tundra locations.We found biogeographical patterns in anti-herbivore defence where mean leaf triterpene concentrations and twig resin gland density were greater in resinous taxa and mean concentrations of condensing tannins were greater in non-resinous taxa. This indicates a biome-wide trade-off between triterpene- or tannin-dominated defences. However, we also found variations in chemical defence composition and resin gland density both within and among functional groups (resinous/non-resinous) and taxa, suggesting these categorisations only partly predict chemical herbivore defence. Complex tannins were the only defence compounds negatively related to in vitro digestibility, identifying this previously neglected tannin group as having a potential key role in birch anti-herbivore defence.We conclude that circum-Arctic variation in birch anti-herbivore defence can be partly derived from biogeographical distributions of birch taxa, although our detailed mapping of plant defence provides more information on this variation and can be used for better predictions of herbivore effects on Arctic vegetation.
  •  
2.
  • Lindén, Elin, 1989- (författare)
  • Circumpolar impacts of herbivores on Arctic tundra vegetation
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Arctic tundra vegetation provides many ecological services that have implications for the global climate. However, the tundra biome is currently changing in response to increasing temperatures. Herbivores may mitigate some of these responses to warming through their impact on Arctic vegetation. Understanding plant-herbivore interactions is therefore crucial to make better predictions of future Arctic vegetation changes and possible ecological consequences. Most current knowledge on plant-herbivore-interactions in the Arctic comes from local studies that do not allow for large-scale generalisations due to non-comparable methods. Also, existing large-scale studies of herbivory do not cover the tundra biome in a representative way. In this thesis, I used standardised methodology in biome-wide sampling across the Arctic tundra, to uncover how plant-herbivore interactions shape circumpolar vegetation patterns.  I have identified clear biogeographic patterns in plant chemical defence against herbivores that could influence the capacity of herbivores to control warming-driven increases of birch shrubs. I also found that herbivores counteract many effects of climate change on tundra vegetation by reducing vegetation greenness (NDVI), Leaf Area Index (LAI), vegetation density and shrub abundance and thereby mitigate vegetation responses to climate warming. Herbivores also increase species richness across the Arctic by supressing dominant species but not by increasing light availability. In a detailed study, I show that the effects of large and small herbivores are similar between continents although they vary with habitat type. This thesis advances our understanding of top-down control of herbivores on tundra vegetation and provides important tools to better predict future Arctic vegetation changes.
  •  
3.
  • Prager, Case M., et al. (författare)
  • Integrating natural gradients, experiments, and statistical modeling in a distributed network experiment : An example from the WaRM Network
  • 2022
  • Ingår i: Ecology and Evolution. - : John Wiley & Sons. - 2045-7758. ; 12:10
  • Tidskriftsartikel (refereegranskat)abstract
    • A growing body of work examines the direct and indirect effects of climate change on ecosystems, typically by using manipulative experiments at a single site or performing meta-analyses across many independent experiments. However, results from single-site studies tend to have limited generality. Although meta-analytic approaches can help overcome this by exploring trends across sites, the inherent limitations in combining disparate datasets from independent approaches remain a major challenge. In this paper, we present a globally distributed experimental network that can be used to disentangle the direct and indirect effects of climate change. We discuss how natural gradients, experimental approaches, and statistical techniques can be combined to best inform predictions about responses to climate change, and we present a globally distributed experiment that utilizes natural environmental gradients to better understand long-term community and ecosystem responses to environmental change. The warming and (species) removal in mountains (WaRM) network employs experimental warming and plant species removals at high- and low-elevation sites in a factorial design to examine the combined and relative effects of climatic warming and the loss of dominant species on community structure and ecosystem function, both above- and belowground. The experimental design of the network allows for increasingly common statistical approaches to further elucidate the direct and indirect effects of warming. We argue that combining ecological observations and experiments along gradients is a powerful approach to make stronger predictions of how ecosystems will function in a warming world as species are lost, or gained, in local communities.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy