SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sundue M.) srt2:(2022)"

Sökning: WFRF:(Sundue M.) > (2022)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mellado-Mansilla, D., et al. (författare)
  • The relationship between chlorophyllous spores and mycorrhizal associations in ferns: evidence from an evolutionary approach
  • 2022
  • Ingår i: American Journal of Botany. - : Wiley. - 0002-9122 .- 1537-2197. ; 109:12, s. 2068-2081
  • Tidskriftsartikel (refereegranskat)abstract
    • PremiseApproximately 14% of all fern species have physiologically active chlorophyllous spores that are much more short-lived than the more common and dormant achlorophyllous spores. Most chlorophyllous-spored species (70%) are epiphytes and account for almost 37% of all epiphytic ferns. Chlorophyllous-spored ferns are also overrepresented among fern species in habitats with waterlogged soils, of which nearly 60% have chlorophyllous spores. Ferns in these disparate habitat types also have a low incidence of mycorrhizal associations. We therefore hypothesized that autotrophic chlorophyllous spores represent an adaptation of ferns to habitats with scarce mycorrhizal associations. MethodsWe evaluated the coevolution of chlorophyllous spores and mycorrhizal associations in ferns and their relation to habitat type using phylogenetic comparative methods. ResultsAlthough we did not find support for the coevolution of spore type and mycorrhizal associations, we did find that chlorophyllous spores and the absence of mycorrhizal associations have coevolved with epiphytic and waterlogged habitats. Transition rates to epiphytic and waterlogged habitats were significantly higher in species with chlorophyllous spores compared to achlorophyllous lineages. ConclusionsSpore type and mycorrhizal associations appear to play important roles in the radiation of ferns into different habitat types. Future work should focus on clarifying the functional significance of these associations.
  •  
2.
  • Mehltreter, K., et al. (författare)
  • Hydathodes in ferns: their phylogenetic distribution, structure and function
  • 2022
  • Ingår i: Annals of Botany. - : Oxford University Press (OUP). - 0305-7364 .- 1095-8290. ; 130:3, s. 331-344
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Aims Ferns are the second largest group of vascular plants and are distributed nearly worldwide. Although ferns have been integrated into some comparative ecological studies focusing on hydathodes, there is a considerable gap in our understanding of the functional anatomy of these secretory tissues that are found on the vein endings of many fern leaves. In this study, we aimed to investigate the phylogenetic distribution, structure and function of fern hydathodes. Methods We performed a global review on fern hydathodes and their phylogenetic distribution, carried out an ancestral character state reconstruction, and studied the structure, guttation and elemental composition of salt residues of eight species, and the diurnal patterns of xylem pressure of two species. Key Results Hydathodes are known from 1189 fern species, 92 genera and 19 families of 2 orders, Equisetales and Polypodiales. Stochastic character mapping indicated multiple gains and losses of hydathodes at the genus level, occurring especially during the last 50 million years of fern evolution. Hydathodes were located on the adaxial leaf surface and characterized by a cytoplasm-rich, pore-free epidermis, and became functional for several weeks after nearly complete leaf expansion. In two species, positive xylem pressure built up at night, potentially facilitating guttation. Guttation fluid was rich in Ca and often Si, but also contained P, Mg, Na and Al. Conclusions Stochastic character mapping and the structural and functional diversity of hydathodes indicate multiple origins, and their presence/absence in closely related taxa implies secondary losses during fern evolution. Positive xylem pressure and high air humidity play an important role as drivers of guttation. Hydathodes may contribute to the regulation of leaf nutrient stoichiometry by the release of excessive compounds and minerals other than waste products, but the presence of essential chemical elements in salt residues also indicates possible leakage.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2
Typ av publikation
tidskriftsartikel (2)
Typ av innehåll
refereegranskat (2)
Författare/redaktör
Testo, Weston L. (2)
Kessler, M. (1)
Kreft, H. (1)
Jansen, S (1)
Wachter, H (1)
Mehltreter, K. (1)
visa fler...
Trabi, C. (1)
Sundue, M. (1)
Mellado-Mansilla, D. (1)
Sundue, M. A. (1)
Zotz, G. (1)
Coiro, M. (1)
visa färre...
Lärosäte
Göteborgs universitet (2)
Språk
Engelska (2)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (2)
År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy