SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Suridjan I.) srt2:(2022)"

Sökning: WFRF:(Suridjan I.) > (2022)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mander, B. A., et al. (författare)
  • Inflammation, tau pathology, and synaptic integrity associated with sleep spindles and memory prior to beta-amyloid positivity
  • 2022
  • Ingår i: Sleep. - : Oxford University Press (OUP). - 0161-8105 .- 1550-9109. ; 45:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Study Objectives Fast frequency sleep spindles are reduced in aging and Alzheimer's disease (AD), but the mechanisms and functional relevance of these deficits remain unclear. The study objective was to identify AD biomarkers associated with fast sleep spindle deficits in cognitively unimpaired older adults at risk for AD. Methods Fifty-eight cognitively unimpaired, beta-amyloid-negative, older adults (mean +/- SD; 61.4 +/- 6.3 years, 38 female) enriched with parental history of AD (77.6%) and apolipoprotein E (APOE) epsilon 4 positivity (25.9%) completed the study. Cerebrospinal fluid (CSF) biomarkers of central nervous system inflammation, beta-amyloid and tau proteins, and neurodegeneration were combined with polysomnography (PSG) using high-density electroencephalography and assessment of overnight memory retention. Parallelized serial mediation models were used to assess indirect effects of age on fast frequency (13 to <16Hz) sleep spindle measures through these AD biomarkers. Results Glial activation was associated with prefrontal fast frequency sleep spindle expression deficits. While adjusting for sex, APOE epsilon 4 genotype, apnea-hypopnea index, and time between CSF sampling and sleep study, serial mediation models detected indirect effects of age on fast sleep spindle expression through microglial activation markers and then tau phosphorylation and synaptic degeneration markers. Sleep spindle expression at these electrodes was also associated with overnight memory retention in multiple regression models adjusting for covariates. Conclusions These findings point toward microglia dysfunction as associated with tau phosphorylation, synaptic loss, sleep spindle deficits, and memory impairment even prior to beta-amyloid positivity, thus offering a promising candidate therapeutic target to arrest cognitive decline associated with aging and AD.
  •  
2.
  • Rodriguez-Fernandez, B., et al. (författare)
  • Genetically predicted telomere length and Alzheimer's disease endophenotypes: a Mendelian randomization study
  • 2022
  • Ingår i: Alzheimers Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Telomere length (TL) is associated with biological aging, consequently influencing the risk of age-related diseases such as Alzheimer's disease (AD). We aimed to evaluate the potential causal role of TL in AD endophenotypes (i.e., cognitive performance, N = 2233; brain age and AD-related signatures, N = 1134; and cerebrospinal fluid biomarkers (CSF) of AD and neurodegeneration, N = 304) through a Mendelian randomization (MR) analysis. Our analysis was conducted in the context of the ALFA (ALzheimer and FAmilies) study, a population of cognitively healthy individuals at risk of AD. A total of 20 single nucleotide polymorphisms associated with TL were used to determine the effect of TL on AD endophenotypes. Analyses were adjusted by age, sex, and years of education. Stratified analyses by APOE-epsilon 4 status and polygenic risk score of AD were conducted. MR analysis revealed significant associations between genetically predicted longer TL and lower levels of CSF A beta and higher levels of CSF NfL only in APOE-epsilon 4 non-carriers. Moreover, inheriting longer TL was associated with greater cortical thickness in age and AD-related brain signatures and lower levels of CSF p-tau among individuals at a high genetic predisposition to AD. Further observational analyses are warranted to better understand these associations.
  •  
3.
  • Akinci, M., et al. (författare)
  • Prepandemic Alzheimer Disease Biomarkers and Anxious-Depressive Symptoms During the COVID-19 Confinement in Cognitively Unimpaired Adults
  • 2022
  • Ingår i: NEUROLOGY. - : Ovid Technologies (Wolters Kluwer Health). - 0028-3878 .- 1526-632X. ; 99:14
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Objectives Increased anxious-depressive symptomatology is observed in the preclinical stage of Alzheimer disease (AD), which may accelerate disease progression. We investigated whether beta-amyloid, cortical thickness in medial temporal lobe structures, neuroinflammation, and sociodemographic factors were associated with greater anxious-depressive symptoms during the COVID-19 confinement. Methods This retrospective observational study included cognitively unimpaired older adults from the Alzheimer's and Families cohort, the majority with a family history of sporadic AD. Participants performed the Hospital Anxiety and Depression Scale (HADS) during the COVID-19 confinement. A subset had available retrospective (on average: 2.4 years before) HADS assessment, amyloid [F-18] flutemetamol PET and structural MRI scans, and CSF markers of neuroinflammation (interleukin-6 [IL-6], triggering receptor expressed on myeloid cells 2, and glial fibrillary acidic protein levels). We performed multivariable linear regression models to investigate the associations of prepandemic AD-related biomarkers and sociodemographic factors with HADS scores during the confinement. We further performed an analysis of covariance to adjust by participants' prepandemic anxiety-depression levels. Finally, we explored the role of stress and lifestyle changes (sleep patterns, eating, drinking, smoking habits, and medication use) on the tested associations and performed sex-stratified analyses. Results We included 921 (254 with AD biomarkers) participants. beta-amyloid positivity (B = 3.73; 95% CI = 1.1 to 6.36; p = 0.006), caregiving (B = 1.37; 95% CI 0.24-2.5; p = 0.018), sex (women: B = 1.95; 95% CI 1.1-2.79; p < 0.001), younger age (B = -0.12; 95% CI -0.18 to -0.052; p < 0.001), and lower education (B = -0.16; 95% CI -0.28 to -0.042; p = 0.008) were associated with greater anxious-depressive symptoms during the confinement. Considering prepandemic anxiety-depression levels, we further observed an association between lower levels of CSF IL-6 (B = -5.11; 95% CI -10.1 to -0.13; p = 0.044) and greater HADS scores. The results were independent of stress-related variables and lifestyle changes. Stratified analysis revealed that the associations were mainly driven by women. Discussion Our results link AD-related pathophysiology and neuroinflammation with greater anxious-depressive symptomatology during the COVID-19-related confinement, notably in women. AD pathophysiology may increase neuropsychiatric symptomatology in response to stressors. This association may imply a worse clinical prognosis in people at risk for AD after the pandemic and thus deserves to be considered by clinicians.
  •  
4.
  • Cacciaglia, R., et al. (författare)
  • Age, sex and APOE-epsilon 4 modify the balance between soluble and fibrillar beta-amyloid in non-demented individuals: topographical patterns across two independent cohorts
  • 2022
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 27, s. 2010-2018
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyloid (A beta) pathology is the earliest detectable pathophysiological event along the Alzheimer's continuum, which can be measured both in the cerebrospinal fluid (CSF) and by Positron Emission Tomography (PET). Yet, these biomarkers identify two distinct A beta pools, reflecting the clearance of soluble A beta as opposed to the presence of A beta fibrils in the brain. An open question is whether risk factors known to increase Alzheimer's' disease (AD) prevalence may promote an imbalance between soluble and deposited A beta. Unveiling such interactions shall aid our understanding of the biological pathways underlying A beta deposition and foster the design of effective prevention strategies. We assessed the impact of three major AD risk factors, such as age, APOE-epsilon 4 and female sex, on the association between CSF and PET A beta, in two independent samples of non-demented individuals (ALFA: n = 320, ADNI: n = 682). We tested our hypotheses both in candidate regions of interest and in the whole brain using voxel-wise non-parametric permutations. All of the assessed risk factors induced a higher A beta deposition for any given level of CSF A beta 42/40, although in distinct cerebral topologies. While age and sex mapped onto neocortical areas, the effect of APOE-epsilon 4 was prominent in the medial temporal lobe, which represents a target of early tau deposition. Further, we found that the effects of age and APOE-epsilon 4 was stronger in women than in men. Our data indicate that specific AD risk factors affect the spatial patterns of cerebral A beta aggregation, with APOE-epsilon 4 possibly facilitating a co-localization between A beta and tau along the disease continuum.
  •  
5.
  •  
6.
  • Cacciaglia, R, et al. (författare)
  • Age, sex and APOE-ε4 modify the balance between soluble and fibrillar β-amyloid in non-demented individuals: topographical patterns across two independent cohorts
  • 2022
  • Ingår i: Molecular psychiatry. - : Springer Science and Business Media LLC. - 1476-5578 .- 1359-4184. ; 27:4, s. 2010-2018
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyloid (Aβ) pathology is the earliest detectable pathophysiological event along the Alzheimer’s continuum, which can be measured both in the cerebrospinal fluid (CSF) and by Positron Emission Tomography (PET). Yet, these biomarkers identify two distinct Aβ pools, reflecting the clearance of soluble Aβ as opposed to the presence of Aβ fibrils in the brain. An open question is whether risk factors known to increase Alzheimer’s’ disease (AD) prevalence may promote an imbalance between soluble and deposited Aβ. Unveiling such interactions shall aid our understanding of the biological pathways underlying Aβ deposition and foster the design of effective prevention strategies. We assessed the impact of three major AD risk factors, such as age, APOE-ε4 and female sex, on the association between CSF and PET Aβ, in two independent samples of non-demented individuals (ALFA: n = 320, ADNI: n = 682). We tested our hypotheses both in candidate regions of interest and in the whole brain using voxel-wise non-parametric permutations. All of the assessed risk factors induced a higher Aβ deposition for any given level of CSF Aβ42/40, although in distinct cerebral topologies. While age and sex mapped onto neocortical areas, the effect of APOE-ε4 was prominent in the medial temporal lobe, which represents a target of early tau deposition. Further, we found that the effects of age and APOE-ε4 was stronger in women than in men. Our data indicate that specific AD risk factors affect the spatial patterns of cerebral Aβ aggregation, with APOE-ε4 possibly facilitating a co-localization between Aβ and tau along the disease continuum.
  •  
7.
  • Dong, R. C., et al. (författare)
  • Principal components from untargeted cerebrospinal fluid metabolomics associated with Alzheimer's disease biomarkers
  • 2022
  • Ingår i: Neurobiology of Aging. - : Elsevier BV. - 0197-4580. ; 117, s. 12-23
  • Tidskriftsartikel (refereegranskat)abstract
    • Studying the correlation between cerebrospinal fluid (CSF) metabolites and the Alzheimer's Disease (AD) biomarkers may offer a window to the alterations of the brain metabolome and unveil potential biological mechanisms underlying AD. In this analysis, 308 CSF metabolites from 338 individuals of Wisconsin Registry for Alzheimer's Prevention and Wisconsin Alzheimer's Disease Research Center were included in a principal component analysis (PCA). The resulted principal components (PCs) were tested for association with CSF total tau (t-tau), phosphorylated tau (p-tau), amyloid beta 42 (A beta 42), and A beta 42/40 ratio using linear regression models. Significant PCs were further tested with other CSF NeuroToolKit (NTK) and imaging biomarkers. Using a Bonferroni corrected p < 0.05, 5 PCs were significantly associated with CSF p-tau and t-tau and 3 PCs were significantly associated with CSF A beta 42. Pathway analysis suggested that these PCS were enriched in 6 pathways, including metabolism of caffeine and nicotinate and nicotinamide. This study provides evidence that CSF metabolites are associated with AD pathology through core AD biomarkers and other NTK markers and suggests potential pathways to follow up in future studies.(c) 2022 Elsevier Inc. All rights reserved.
  •  
8.
  • Jonaitis, E. M., et al. (författare)
  • Crosswalk study on blood collection-tube types for Alzheimer's disease biomarkers
  • 2022
  • Ingår i: Alzheimer's & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Blood-based Alzheimer's disease (AD) biomarkers show promise, but pre-analytical protocol differences may pose problems. We examined seven AD blood biomarkers (amyloid beta [A beta]42${\rm{A\beta }}]{_{42}}$, A beta 40${\rm{A}}{{{\beta}}_{40}}$, phosphorylatedtau[p-tau181${\rm{phosphorylated\;tau\;[p - ta}}{{\rm{u}}_{181}}$, total tau [t-tau], neurofilament light chain [NfL], A beta 4240,${\rm{A}}{{{\beta}}_{\frac{{42}}{{40}}}},$ and p-tau181A beta 42$\frac{{{\rm{p - ta}}{{\rm{u}}_{181}}}}{{{\rm{A}}{{{\beta}}_{42}}}}$) in three collection tube types (ethylenediaminetetraacetic acid [EDTA] plasma, heparin plasma, serum). Methods Plasma and serum were obtained from cerebrospinal fluid or amyloid positron emission tomography-positive and -negative participants (N = 38) in the Wisconsin Registry for Alzheimer's Prevention. We modeled AD biomarker values observed in EDTA plasma versus heparin plasma and serum, and assessed correspondence with brain amyloidosis. Results Results suggested bias due to tube type, but crosswalks are possible for some analytes, with excellent model fit for NfL (R2${{\rm{R}}<^>2}\;$= 0.94), adequate for amyloid (R2${{\rm{R}}<^>2}\;$= 0.40-0.69), and weaker for t-tau (R2${{\rm{R}}<^>2}\;$= 0.04-0.42) and p-tau181${\rm{p - ta}}{{\rm{u}}_{181}}$ ( R2${{\rm{R}}<^>2}\;$= 0.22-0.29). Brain amyloidosis differentiated several measures, especially EDTA plasma pTau181A beta 42$\frac{{{\rm{pTa}}{{\rm{u}}_{181}}}}{{{\rm{A}}{\beta _{42}}}}$ (d$d\;$= 1.29). Discussion AD biomarker concentrations vary by tube type. However, correlations for some biomarkers support harmonization across types, suggesting cautious optimism for use in banked blood.
  •  
9.
  • Morrow, A., et al. (författare)
  • Cerebrospinal Fluid Sphingomyelins in Alzheimer's Disease, Neurodegeneration, and Neuroinflammation
  • 2022
  • Ingår i: Journal of Alzheimers Disease. - : IOS Press. - 1387-2877 .- 1875-8908. ; 90:2, s. 667-680
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Sphingomyelin (SM) levels have been associated with Alzheimer's disease (AD), but the association direction has been inconsistent and research on cerebrospinal fluid (CSF) SMs has been limited by sample size, breadth of SMs examined, and diversity of biomarkers available. Objective: Here, we seek to build on our understanding of the role of SM metabolites in AD by studying a broad range of CSF SMs and biomarkers of AD, neurodegeneration, and neuroinflammation. Methods: Leveraging two longitudinal AD cohorts with metabolome-wide CSF metabolomics data (n = 502), we analyzed the relationship between the levels of 12 CSF SMs, and AD diagnosis and biomarkers of pathology, neurodegeneration, and neuroinflammation using logistic, linear, and linear mixed effects models. Results: No SMs were significantly associated with AD diagnosis, mild cognitive impairment, or amyloid biomarkers. Phosphorylated tau, neurofilament light, alpha-synuclein, neurogranin, soluble triggering receptor expressed on myeloid cells 2, and chitinase-3-like-protein 1 were each significantly, positively associated with at least 5 of the SMs. Conclusion: The associations between SMs and biomarkers of neurodegeneration and neuroinflammation, but not biomarkers of amyloid or diagnosis of AD, point to SMs as potential biomarkers for neurodegeneration and neuroinflammation that may not be AD-specific.
  •  
10.
  • Salvado, G., et al. (författare)
  • Brain alterations in the early Alzheimer's continuum with amyloid-beta, tau, glial and neurodegeneration CSF markers
  • 2022
  • Ingår i: Brain Communications. - : Oxford University Press (OUP). - 2632-1297. ; 4:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Higher grey matter volumes/cortical thickness and fluorodeoxyglucose uptake have been consistently found in cognitively unimpaired individuals with abnormal Alzheimer's disease biomarkers compared with those with normal biomarkers. It has been hypothesized that such transient increases may be associated with neuroinflammatory mechanisms triggered in response to early Alzheimer's pathology. Here, we evaluated, in the earliest stages of the Alzheimer's continuum, associations between grey matter volume and fluorodeoxyglucose uptake with CSF biomarkers of several pathophysiological mechanisms known to be altered in preclinical Alzheimer's disease stages. We included 319 cognitively unimpaired participants from the ALFA+ cohort with available structural MRI, fluorodeoxyglucose PET and CSF biomarkers of amyloid-beta and tau pathology (phosphorylated tau and total tau), synaptic dysfunction (neurogranin), neuronal and axonal injury (neurofilament light), glial activation (soluble triggering receptor on myeloid cells 2, YKL40, GFAP, interleukin-6 and S100b) and alpha-synuclein using the Roche NeuroToolKit. We first used the amyloid-beta/tau framework to investigate differences in the neuroimaging biomarkers between preclinical Alzheimer's disease stages. Then, we looked for associations between the neuroimaging markers and all the CSF markers. Given the non-negative nature of the concentrations of CSF biomarkers and their high collinearity, we clustered them using non-negative matrix factorization approach (components) and sought associations with the imaging markers. By groups, higher grey matter volumes were found in the amyloid-beta-positive tau-negative participants with respect to the reference amyloid-beta-negative tau-negative group. Both amyloid-beta and tau-positive participants showed higher fluorodeoxyglucose uptake than tau-negative individuals. Using the obtained components, we observed that tau pathology accompanied by YKL-40 (astrocytic marker) was associated with higher grey matter volumes and fluorodeoxyglucose uptake in extensive brain areas. Higher grey matter volumes in key Alzheimer-related regions were also found in association with two other components characterized by a higher expression of amyloid-beta in combination with different glial markers: one with higher GFAP and S100b levels (astrocytic markers) and the other one with interleukin-6 (pro-inflammatory). Notably, these components' expression had different behaviours across amyloid-beta/tau stages. Taken together, our results show that CSF amyloid-beta and phosphorylated tau, in combination with different aspects of glial response, have distinctive associations with higher grey matter volumes and increased glucose metabolism in key Alzheimer-related regions. These mechanisms combine to produce transient higher grey matter volumes and fluorodeoxyglucose uptake at the earliest stages of the Alzheimer's continuum, which may revert later on the course of the disease when neurodegeneration drives structural and metabolic cerebral changes. Salvado et al. show that amyloid-beta and tau pathologies, in combination with different aspects of glial response, have distinctive associations with brain's structure and function in key Alzheimer-related regions. These mechanisms combine to produce transient higher grey matter volumes and glucose metabolism at the earliest stages of the Alzheimer's continuum.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy