SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Suuronen J) srt2:(2002-2004)"

Sökning: WFRF:(Suuronen J) > (2002-2004)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Suuronen, Erik J., et al. (författare)
  • Innervated human corneal equivalents as in vitro models for nerve-target cell interactions
  • 2003
  • Ingår i: The FASEB Journal. - : Federation of American Society of Experimental Biology (FASEB). - 0892-6638 .- 1530-6860. ; 17, s. 170-
  • Tidskriftsartikel (refereegranskat)abstract
    • A sensory nerve supply is crucial for optimal tissue function. However, the mechanisms for successful innervation and the signaling pathways between nerves and their target tissue are not fully understood. Engineered tissue substitutes can provide controllable environments in which to study tissue innervation. We have therefore engineered human corneal substitutes that promote nerve in-growth in a pattern similar to in vivo re-innervation. We demonstrate that these nerves (a) are morphologically equivalent to natural corneal nerves; (b) make appropriate contact with target cells; (c) can generate action potentials; (d) respond to chemical and physical stimuli; and (e) play an important role in the overall functioning of the bioengineered tissue. This model can be used for studying the more general topics of nerve ingrowth or regeneration and the interaction between nerves and their target cells and, more specifically, the role of nerves in corneal function. This model could also be used as an in vitro alternative to animals for safety and efficacy testing of chemicals and drugs.
  •  
2.
  • Griffith, May, et al. (författare)
  • Artificial human corneas - Scaffolds for transplantation and host regeneration
  • 2002
  • Ingår i: Cornea. - : Lippincott, Williams andamp; Wilkins. - 0277-3740 .- 1536-4798. ; 21:7, s. S54-S61
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose. To review the development of artificial corneas (prostheses and tissue equivalents) for transplantation, and to provide recent updates on our tissue-engineered replacement corneas. Methods. Modified natural polymers and synthetic polymers were screened for their potential to replace damaged portions of the human cornea or the entire corneal thickness. These polymers, combined with cells derived from each of the three main corneal layers or stem cells, were used to develop artificial corneas. Functional testing was performed in vitro. Trials of biocompatibility and immune and inflammatory reactions were performed by implanting the most promising polymers into rabbit corneas. Results. Collagen-based biopolymers, combined with synthetic crosslinkers or copolymers, formed effective scaffolds for developing prototype artificial corneas that could be used as tissue replacements in the future. We have previously developed an artificial cornea that mimicked key morphologic and functional properties of the human cornea. The addition of synthetic polymers increased its toughness as it retained transparency and low light scattering, making the matrix scaffold more suitable for transplantation. These new composites were implanted into rabbits without causing any acute inflammation or immune response. We have also fabricated full-thickness composites that can be fully sutured. However, the long-term effects of these artificial corneas need to be evaluated. Conclusions. Novel tissue-engineered corneas that comprise composites of natural and synthetic biopolymers together with corneal cell lines or stem cells will, in the future, replace portions of the cornea that are damaged. Our results provide a basis for the development of both implantable temporary and permanent corneal replacements.
  •  
3.
  • Suuronen, Erik J., et al. (författare)
  • Functional innervation in tissue engineered models for in vitro study and testing purposes
  • 2004
  • Ingår i: Toxicological Sciences. - : Oxford University Press (OUP). - 1096-6080 .- 1096-0929. ; 82:2, s. 525-533
  • Tidskriftsartikel (refereegranskat)abstract
    • The biotechnology industry is rapidly expanding and the emerging field of tissue engineering is projected to have a high impact in the near future. Recently the field of cellular, drug, and prosthetic delivery has melded with the field of tissue engineering to make simulated tissues. In addition to their roles as tissue substitutes for transplantation, these simulated tissues may provide more accurate models and environments for toxicology testing and the study of peripheral nerves. The current study demonstrates the importance of innervation, in general, for the function of engineered tissues. We observe that the presence of nerves in a tissue engineered (TE) human cornea model enhances the growth of the epithelium and the formation of its protective mucin layer. Innervation also confers protection to the epithelium from chemical insult, as determined by the level of post-treatment epithelial cell death. We demonstrate differential responses of the nerves to chemical stimuli by changes in intracellular sodium as measured by 2-photon microscopy. The 2-photon imaging techniques also allow for the visualization and study of the fine sensory axon fibers within the 3-dimensional tissue. This work demonstrates a role for innervation in the protective quality and function of the engineered tissue, and the potential to use the nerves themselves as indicators of the severity of an insult. These results are important to consider for the development of any optimized TE models for in vitro study and testing purposes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy