SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Svanström Magdalena) srt2:(2010-2014)"

Sökning: WFRF:(Svanström Magdalena) > (2010-2014)

  • Resultat 1-10 av 74
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Anselm, Jonas, et al. (författare)
  • Bannlys alla politiska beslut som ger mer klimatutsläpp
  • 2014
  • Ingår i: Dagens Nyheter.
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Torftig valdebatt. Dagspolitiken klarar inte att hantera ödesfrågan om klimatet, vilket oroar oss. Vi föreslår därför ett ”utsläppsmoratorium”: inga beslut får tas som ökar utsläppen av växthusgaser. Principen måste kopplas till mål om exempelvis förnybar energi och grön infrastruktur, skriver 23 forskare och debattörer.
  •  
4.
  •  
5.
  • Arvidsson, Rickard, 1984, et al. (författare)
  • Assessing the Environmental Impacts of Palm Oil
  • 2011
  • Ingår i: Palm Oil: Nutrition, Uses and Impacts. - : Nova Science Publishers, Inc.. - 9781612099217 ; , s. 159-186
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Palm oil is used for cooking in Southeast Asia and Africa and as a food additive in a number of processed foods world-wide. The production of palm oil is increasing, and it is of special interest from a nutritional point of view due to its high energy content and its significant content of micronutrients. In addition, palm oil is increasingly used to produce various biofuels. Due to large production volumes and diverse applications of palm oil, it is highly interesting and important to study the environmental impacts of its production. This chapter discusses how the environmental impacts of palm oil can be assessed, focusing on the life cycle environmental impacts of palm oil in comparison to similar products. A brief overview of life cycle assessment as a method is given, and results are presented together with suggestions for environmental improvements of palm oil cultivation and production. It is shown that the magnitude of the environmental impacts connected to palm oil in relation to other products is heavily affected by the choice of environmental indicators, which in LCA studies consist of both an environmental impact category and a so-called functional unit. Regarding impact categories, the global warming and acidification potentials of palm oil are lower than those of rapeseed oil per kg oil. The water footprint of palm oil and rapeseed oil are about the same on a mass basis, but for the two land use indicators soil erosion and heavy metal accumulation, rapeseed oil has a lower impact than palm oil. Specific interest is given to the life cycle energy use of palm oil in response to the unclear and diverse definitions of this impact category in different studies. It is concluded that there is a need to carefully define the energy use impact category when reporting on palm oil or similar products, and also to differentiate between different kinds of energy sources. If instead of mass the micronutrient content is applied as functional unit, palm oil still has lower global warming potential and acidification than rapeseed oil when compared on the basis of vitamin E content. However, if β-carotene content is used as functional unit, rapeseed oil is not relevant for comparison due to its negligible content of β-carotene. For that case, palm oil is therefore instead compared to tomatoes on a β-carotene basis, since tomatoes are rich in β-carotene. The tomatoes were shown to perform better then palm oil regarding global warming potential on a β-carotene basis. The effects of time and scale on the environmental impacts of palm oil, which includes changes in technical performance and electricity sources, are also discussed in this chapter. It is shown that combustion of the methane formed from the palm oil mill effluent can significantly reduce the global warming potential.
  •  
6.
  • Arvidsson, Rickard, 1984, et al. (författare)
  • Energy use indicators in energy and life cycle assessments of biofuels: review and recommendations
  • 2012
  • Ingår i: Journal of Cleaner Production. - : Elsevier BV. - 0959-6526 .- 1879-1786. ; 31, s. 54-61
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study we investigate how indicators for energy use are applied in a set of life cycle assessment (LCA) and energy analysis case studies of biofuels. We found five inherently different types of indicators to describe energy use: (1) fossil energy, (2) secondary energy, (3) cumulative energy demand, (4) net energy balance, and (5) total extracted energy. It was also found that the examined reports and articles, the choice of energy use indicator was seldom motivated or discussed in relation to other energy use indicators. In order to investigate the differences between these indicators, they were applied to a case. The life cycle energy use of palm oil methyl ester was calculated and reported using these five different indicators for energy use, giving considerably different output results. This is in itself not unexpected, but indicates the importance of clearly identifying, describing and motivating the choice of energy use indicator. The indicators can all be useful in specific situations, depending on the goal and scope of the individual study, but the choice of indicators need to be better reported and motivated than what is generally done today.
  •  
7.
  • Arvidsson, Rickard, 1984, et al. (författare)
  • How do we know the energy use when producing biomaterials or biofuels?
  • 2012
  • Ingår i: Proceedings of ECO-TECH 2012.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • How much fossil energy that is used in the production of biomaterials or biofuels (e.g. fuel used in harvesting) is a parameter of obvious interest when optimizing the production systems. To use more fossil fuels in the production of a biofuel than what will be available as the biofuel product is obviously a bad idea. With increasing interest in biomaterials and biofuels, a shift from a sole focus on fossil energy will be necessary. Optimized use of energy over the whole life cycle is one important parameter to ensure sustainability. However, to report and interpret values on life cycle energy use is not as straight forward as what might immediately be perceived. The impact category ‘energy use’ is frequently used but is generally not applied in a transparent and consistent way between different studies. Considering the increased focus on biofuels, it is important to inform companies and policy-makers about the energy use of biofuels in relevant and transparent ways with well-defined indicators. The present situation in how energy use indicators are applied was studied in a set of LCA studies of biofuels. It was found that the choice of indicator was seldom motivated or discussed in the examined reports and articles, and five inherently different energy use indicators were observed: (1) fossil energy, (2) secondary energy, (3) cumulative energy demand (primary energy), (4) net energy balance, and (5) total extracted energy. As a test, we applied these five energy use indicators to the same cradle-to-gate production system and they give considerably different output numbers of energy use. This in itself is not unexpected, but indicates the importance of clearly identifying, describing and motivating the choice of energy use indicator. Direct comparisons between different energy use results could lead to misinformed policy decisions.
  •  
8.
  • Arvidsson, Rickard, 1984, et al. (författare)
  • How much energy is used when producing biofuels?
  • 2012
  • Ingår i: World Bioenergy 2012, Jönköping, Sweden.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Considering the increased focus on biofuels, it is important to inform companies and policy-makers about the energy use for production of biofuels in relevant and transparent ways, using well-defined indicators. The amount of fossil energy used in the production of a biofuel (e.g. diesel fuel used in harvesting) is a parameter of obvious interest when comparing different biofuels or when optimizing the production systems. With increasing worldwide production of different biofuels, a shift in focus from fossil energy to the entire energy use will also be necessary. In that context, not only reducing the use of fossil fuels in biofuel production, but also optimizing the use of all energy sources over the whole life cycle becomes an important to ensure the sustainability of biofuels. However, to report and interpret values on life cycle energy use is not straight forward due to methodological difficulties. The impact category ‘energy use’ is frequently used in life cycle assessment (LCA). But the term ‘energy use’ is generally not applied in a transparent and consistent way between different LCA studies of biofuels. It is often unclear whether the total energy use, or only fossil energy, has been considered, and whether primary or secondary energy has been considered. In addition, it is often difficult to tell if and how the energy content of the fuel or the biomass source was included in the energy use. This study presents and discusses the current situation in terms of energy use indicators are applied in LCA studies on biofuels. It was found that the choice of indicator was seldom motivated or discussed in the examined reports and articles, and five inherently different energy use indicators were observed: (1) fossil energy, (2) secondary energy, (3) cumulative energy demand (primary energy), (4) net energy balance, and (5) total extracted energy. As an illustration, we applied these five energy use indicators to the same cradle-to-gate production system (production of palm oil methyl ester), resulting in considerably different output numbers of energy use. This in itself is not unexpected, but indicates the importance of clearly identifying, describing and motivating the choice of energy use indicator. All five indicators can be useful in specific situations, depending on the goal and scope of the individual study, but the choice of indicator needs to be better reported and motivated than what is generally done today. Above all, it is important to avoid direct comparisons between different energy use results calculated using different indicators, since this could lead to misinformed policy decisions.
  •  
9.
  • Arvidsson, Rickard, 1984, et al. (författare)
  • Life cycle assessment of hydrotreated vegetable oil from rape, oil palm and Jatropha
  • 2011
  • Ingår i: Journal of Cleaner Production. - : Elsevier BV. - 0959-6526 .- 1879-1786. ; 19:2-3, s. 128-137
  • Tidskriftsartikel (refereegranskat)abstract
    • A life cycle assessment of hydrotreated vegetable oil (HVO) biofuel was performed. The study wascommissioned by Volvo Technology Corporation and Volvo Penta Corporation as part of an effort to gaina better understanding of the environmental impact of potential future biobased liquid fuels for cars andtrucks. The life cycle includes production of vegetable oil from rape, oil palm or Jatropha, transport of theoil to the production site, production of the HVO from the oil, and combustion of the HVO. The functionalunit of the study is 1 kWh energy out from the engine of a heavy-duty truck and the environmentalimpact categories that are considered are global warming potential (GWP), acidification potential (AP),eutrophication potential (EP) and embedded fossil production energy. System expansion was used totake into account byproducts from activities in the systems; this choice was made partly to make thisstudy comparable to results reported by other studies. The results show that HVO produced from palmoil combined with energy production from biogas produced from the palm oil mill effluent has thelowest environmental impact of the feedstocks investigated in this report. HVO has a significantly lowerlife cycle GWP than conventional diesel oil for all feedstocks investigated, and a GWP that is comparableto results for e.g. rape methyl ester reported in the literature. The results show that emissions from soilcaused by microbial activities and leakage are the largest contributors to most environmental impactcategories, which is supported also by other studies. Nitrous oxide emissions from soil account for morethan half of the GWP of HVO. Nitrogen oxides and ammonia emissions from soil cause almost all of thelife cycle EP of HVO and contribute significantly to the AP as well. The embedded fossil production energywas shown to be similar to results for e.g. rape methyl ester from other studies. A sensitivity analysisshows that variations in crop yield and in nitrous oxide emissions from microbial activities in soil cancause significant changes to the results.
  •  
10.
  • Arvidsson, Rickard, 1984, et al. (författare)
  • The life cycle environmental performance of a new biomaterial: Wood-based nanocellulose
  • 2014
  • Ingår i: 20th SETAC Europe LCA case Study Symposium.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • This is a study of the environmental performance of nanocellulose, which is a bio-based nanomaterial. Being stronger than steel, biodegradable, transparent, and antibacterial, many potential applications of nanocellulose exist, including composites and films. Global production is steadily increasing, and there are three main types of nanocellulose: (1) Nano-fibrillated cellulose (NFC), which consists of long, spaghetti-like fibers, (2) nano-crystalline cellulose (NCC), which consists of rice-shaped nanoparticles, and (3) bacterial nano cellulose (BNC), which is produced by bacteria. Of these three, NFC and NCC are currently the most produced ones. Many concerns have been raised regarding the high energy use from producing NFC from wood by disintegration of the cellulose fibers. In response to this, a number of production routes involving some kind of pretreatment to facilitate disintegration have been developed. We assessed three routes for NFC production: (1) no pretreatment, (2) the enzymatic production route, where pulp is pretreated by enzymes to facilitate disintegration, and (3) the carboxymethylation production route, where the pulp is pretreated with polyelectrolytes to facilitate disintegration. The routes were assessed with regard to their cradle-to-gate life cycle energy use with a functional unit of 1 kg NFC. Preliminary results show that the enzymatic route required approximately 80-100 MJ/kg, whereas the carboxymethylation route requires approximately 1000 MJ/kg. The route without pretreatment required approximately 200-400 MJ/kg. Notably, the carboxymethylation route had a much higher life cycle energy use than the believed-to-be energy intensive no pretreatment route. This is because the carboxymethylation route requires a large amount of fossil energy in the form of fossil input materials for various purposes. The results illustrate the value of a life cycle perspective when the production of new materials is planned. Comparing these energy use results to that of other nanomaterials as reported in the literature, such as carbon nanotubes and fullerenes (~1000-100000 MJ/kg) and traditional materials such as aluminium (~200 MJ/kg) and polypropylene (~100 MJ/kg) suggest that enzymatic NFC has a very low energy use. Suggestions for improvements are provided in the presentation, and implications for further upscaling are discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 74
Typ av publikation
konferensbidrag (44)
tidskriftsartikel (20)
bokkapitel (5)
bok (2)
annan publikation (1)
forskningsöversikt (1)
visa fler...
licentiatavhandling (1)
visa färre...
Typ av innehåll
övrigt vetenskapligt/konstnärligt (45)
refereegranskat (27)
populärvet., debatt m.m. (2)
Författare/redaktör
Svanström, Magdalena ... (67)
Fröling, Morgan, 196 ... (22)
Peters, Gregory, 197 ... (21)
Clancy, Gunilla, 196 ... (16)
Heimersson, Sara, 19 ... (13)
Arvidsson, Rickard, ... (10)
visa fler...
Molander, Sverker, 1 ... (7)
Svanström, Magdalena (7)
Fransson, Kristin, 1 ... (7)
Lundqvist, Ulrika, 1 ... (6)
Peters, Greg (5)
Ryden, Lars (4)
Gustafsson, Bengt (4)
Hornborg, Alf (4)
Havnevik, Kjell (4)
Friman, Eva (4)
Liljenström, Hans (4)
Sanne, Christer (4)
Silveira, Semida (4)
Lönngren, Johanna, 1 ... (4)
Adawi, Tom, 1970 (3)
Knutson Wedel, Maria ... (3)
Swain, Ashok (3)
Gren, Ing-Marie (3)
Sörlin, Sverker (3)
Holmgren, Pär (3)
Molander, Sverker (3)
Bertanza, Giorgio (3)
Canato, Matteo (3)
Laera, Giuseppe (3)
Eckerberg, Katarina, ... (2)
Gröndahl, Fredrik (2)
Ahniyaz, Anwar (2)
Olsson, Lennart (2)
Edman, Stefan (2)
Carlson, Ola, 1955 (2)
Nyström, Thomas, 197 ... (2)
Pilgård, Annica (2)
Palme, Ulrika, 1966 (2)
Rockström, Johan (2)
Harder, Robin, 1983 (2)
Gustavsson, Sverker (2)
Nyström Claesson, An ... (2)
Wijkman, Anders (2)
Fornara, Andrea (2)
Danielsson, Marianne (2)
Eckerberg, Katarina (2)
Lindberg, Carl (2)
Robért, Carl-Henrik (2)
Holmgren, Karin (2)
visa färre...
Lärosäte
Chalmers tekniska högskola (64)
Mittuniversitetet (17)
RISE (6)
Umeå universitet (5)
Kungliga Tekniska Högskolan (3)
Sveriges Lantbruksuniversitet (2)
visa fler...
Göteborgs universitet (1)
Linnéuniversitetet (1)
visa färre...
Språk
Engelska (67)
Svenska (7)
Forskningsämne (UKÄ/SCB)
Teknik (52)
Samhällsvetenskap (23)
Naturvetenskap (20)
Lantbruksvetenskap (3)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy