SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sveinbjörnsson Kári) srt2:(2017)"

Sökning: WFRF:(Sveinbjörnsson Kári) > (2017)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aitola, Kerttu, et al. (författare)
  • High Temperature-Stable Perovskite Solar Cell Based on Low-Cost Carbon Nanotube Hole Contact
  • 2017
  • Ingår i: Advanced Materials. - : Wiley-VCH Verlagsgesellschaft. - 0935-9648 .- 1521-4095. ; 29:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Mixed ion perovskite solar cells (PSC) are manufactured with a metal-free hole contact based on press-transferred single-walled carbon nanotube (SWCNT) film infiltrated with 2,2,7,-7-tetrakis(N, N-di-p-methoxyphenylamine)-9,90-spirobifluorene (Spiro-OMeTAD). By means of maximum power point tracking, their stabilities are compared with those of standard PSCs employing spin-coated Spiro-OMeTAD and a thermally evaporated Au back contact, under full 1 sun illumination, at 60 degrees C, and in a N-2 atmosphere. During the 140 h experiment, the solar cells with the Au electrode experience a dramatic, irreversible efficiency loss, rendering them effectively nonoperational, whereas the SWCNT-contacted devices show only a small linear efficiency loss with an extrapolated lifetime of 580 h.
  •  
2.
  • Hultqvist, Adam, et al. (författare)
  • Atomic Layer Deposition of Electron Selective SnOx and ZnO Films on Mixed Halide Perovskite : Compatibility and Performance
  • 2017
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 9:35, s. 29707-29716
  • Tidskriftsartikel (refereegranskat)abstract
    • The compatibility of atomic layer deposition directly onto the mixed halide perovskite formamidinium lead iodide:methylammonium lead bromide (CH(NH2)(2), CH3NH3)Pb(I,Br)(3) (FAPbI(3):MAPbBr(3)) perovskite films is investigated by exposing the perovskite films to the full or partial atomic layer deposition processes for the electron selective layer candidates ZnO and SnOx. Exposing the samples to the heat, the vacuum, and even the counter reactant of H2O of the atomic layer deposition processes does not appear to alter the perovskite films in terms of crystallinity, but the choice of metal precursor is found to be critical. The Zn precursor Zn(C2H5)(2) either by itself or in combination with H2O during the ZnO atomic layer deposition (ALD) process is found to enhance the decomposition of the bulk of the perovskite film into PbI2 without even forming ZnO. In contrast, the Sn precursor Sn(N(CH3)(2))(4) does not seem to degrade the bulk of the perovskite film, and conformal SnOx films can successfully be grown on top of it using atomic layer deposition. Using this SnOx film as the electron selective layer in inverted perovskite solar cells results in a lower power conversion efficiency of 3.4% than the 8.4% for the reference devices using phenyl-C-70-butyric acid methyl ester. However, the devices with SnOx show strong hysteresis and can be pushed to an efficiency of 7.8% after biasing treatments. Still, these cells lacks both open circuit voltage and fill factor compared to the references, especially when thicker SnOx films are used. Upon further investigation, a possible cause of these losses could be that the perovskite/SnOx interface is not ideal and more specifically found to be rich in Sn, O, and halides, which is probably a result of the nucleation during the SnOx growth and which might introduce barriers or alter the band alignment for the transport of charge carriers.
  •  
3.
  •  
4.
  • Zhang, Xiaoliang, et al. (författare)
  • Dry-Deposited Transparent Carbon Nanotube Film as Front Electrode in Colloidal Quantum Dot Solar Cells
  • 2017
  • Ingår i: ChemSusChem. - : WILEY-V C H VERLAG GMBH. - 1864-5631 .- 1864-564X. ; 10:2, s. 434-441
  • Tidskriftsartikel (refereegranskat)abstract
    • Single-walled carbon nanotubes (SWCNTs) show great potential as an alternative material for front electrodes in photovoltaic applications, especially for flexible devices. In this work, a press-transferred transparent SWCNT film was utilized as front electrode for colloidal quantum dot solar cells (CQDSCs). The solar cells were fabricated on both glass and flexible substrates, and maximum power conversion efficiencies of 5.5 and 5.6 %, respectively, were achieved, which corresponds to 90 and 92% of an indium-doped tin oxide (ITO)-based device (6.1 %). The SWCNTs are therefore a very good alternative to the ITO-based electrodes especially for flexible solar cells. The optical electric field distribution and optical losses within the devices were simulated theoretically and the results agree with the experimental results. With the optical simulations that were performed it may also be possible to enhance the photovoltaic performance of SWCNT-based solar cells even further by optimizing the device configuration or by using additional optical active layers, thus reducing light reflection of the device and increasing light absorption in the quantum dot layer.
  •  
5.
  • Zhang, Xiaoliang, et al. (författare)
  • FTO-free top-illuminated colloidal quantum dot electro-optics in devices
  • 2017
  • Ingår i: Solar Energy. - : Elsevier BV. - 0038-092X .- 1471-1257. ; 158, s. 533-542
  • Tidskriftsartikel (refereegranskat)abstract
    • A solar cell device architecture with top-illumination, where the light does not pass through the substrate, is advantageous for many applications. It is also specifically useful for the construction of tandem or multiple junction photovoltaic devices, with illumination through the top solar cell. Here, a top-illuminated colloidal quantum dot solar cell (TI-CQDSC) is demonstrated and compared with a conventional colloidal quantum dot solar cell (C-CQDSC) constructed on a FTO (fluorine doped tin oxide) glass substrate both theoretically and experimentally. The optical electric field distribution in the solar cells with different configuration is simulated using transfer matrix formalism and a more intense optical electric field was observed in TI-CQDSC, leading to a higher exciton generation rate within the colloidal quantum dot solid. The TI-CQDSCs are constructed on both nonconductive glass and flexible substrates, and a maximum power conversion efficiency of 6.4% and 5.6% is achieved, respectively, comparing to that of 5.9% for the C-CQDSC. The improved performance of the top illuminated solar cell is attributed to a combination of enhanced optical electric field intensity in the colloidal quantum dot solid and superior conductivity of the transparent metal film electrode.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy