SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Svensson Samuel P. S.) srt2:(2000-2004)"

Sökning: WFRF:(Svensson Samuel P. S.) > (2000-2004)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Karlsson, Annika M., et al. (författare)
  • Biosensing of opioids using frog melanophores
  • 2002
  • Ingår i: Biosensors and Bioelectronics. - 0956-5663. ; 17:4, s. 331-335
  • Tidskriftsartikel (refereegranskat)abstract
    • Spectacular color changes of fishes, frogs and other lower vertebrates are due to the motile activities of specialized pigment containing cells. Pigment cells are interesting for biosensing purposes since they provide an easily monitored physiological phenomenon. Melanophores, containing dark brown melanin pigment granules, constitute an important class of chromatophores. Their melanin-filled pigment granules may be stimulated to undergo rapid dispersion throughout the melanophores (cells appear dark), or aggregation to the center of the melanophores (cells appear light). This simple physiological response can easily be measured in a photometer. Selected G protein coupled receptors can be functionally expressed in cultured frog melanophores. Here, we demonstrate the use of recombinant frog melanophores as a biosensor for the detection of opioids. Melanophores were transfected with the human opioid receptor 3 and used for opiate detection. The response to the opioid receptor agonist morphine and a synthetic opioid peptide was analyzed by absorbance readings in an aggregation assay. It was shown that both agonists caused aggregation of pigment granules in the melanophores, and the cells appeared lighter. The pharmacology of the expressed receptors was very similar to its mammalian counterpart, as evidenced by competitive inhibition by increasing concentrations of the opioid receptor inhibitor naloxone. Transfection of melanophores with selected receptors enables the creation of numerous melanophore biosensors, which respond selectively to certain substances. The melanophore biosensor has potential use for measurement of substances in body fluids such as saliva, blood plasma and urine.
  •  
2.
  • Karlsson, Annika M., et al. (författare)
  • Melatonin-induced organelle movement in melanophores is coupled to tyrosine phosphorylation of a high molecularweight protein
  • 2000
  • Ingår i: Cellular signalling. - 0898-6568. ; 12:7, s. 469-474
  • Tidskriftsartikel (refereegranskat)abstract
    • Melanophores, brown to black pigment cells from, for example, Xenopus laevis, contain mobile melanin filled organelles, and are well suited for studies on organelle movement. The intracellular regulation of the movement seems to be controlled by serine and threonine phosphorylations and dephosphorylations. Melatonin induces aggregation of the melanosomes to the cell centre through a Gi/o-protein-coupled receptor, Mel1c, which leads to an inhibition of PKA and a stimulation of PP2A. However, this study shows that the melatonin-induced aggregation of melanosomes is also accompanied by tyrosine phosphorylation of a protein with a molecular weight of 280 kDa. Cells pre-incubated with genistein, an inhibitor of tyrosine phosphorylations, showed inhibited melanosome movement after melatonin stimulation, and a lower degree of tyrosine phosphorylation of the 280 kDa protein. The adenylyl cyclase activator forskolin, and the Gi/o protein inhibitor pertussis toxin, also inhibited tyrosine phosphorylation of the 280 kDa protein. The results indicate that melatonin stimulation generates tyrosine phosphorylation of a high molecular weight protein, an event that seems to be essential for melanosome aggregation.
  •  
3.
  • Nilsson, Harriet M., et al. (författare)
  • Nitric oxide modulates intracellular translocation of pigment organelles in Xenopus laevis melanophores
  • 2000
  • Ingår i: Cell Motility and the Cytoskeleton. - 0886-1544 .- 1097-0169. ; 47:3, s. 209-218
  • Tidskriftsartikel (refereegranskat)abstract
    • Pigment organelles in Xenopus laevis melanophores are used by the animal to change skin color, and they provide a good model for studying intracellular organelle transport. Movement of organelles and vesicles along the cytoskeleton is essential for many processes, such as axonal transport, endocytosis, and intercompartmental trafficking. Nitric oxide (NO) is a signaling molecule that plays a role in, among other things, relaxation of blood vessels, sperm motility, and polymerization of actin. Our study focused on the effect NO exerts on cytoskeleton-mediated transport, which has previously received little attention. We found that an inhibitor of NO synthesis, N-nitro-L-arginine methyl ester (L-NAME), reduced the melatonin-induced aggregation of the pigment organelles, melanosomes. Preaggregated melanosomes dispersed after treatment with L-NAME but not after exposure to the inactive stereoisomer (D-NAME) or the substrate for NO synthesis (L-arginine). Signal transduction by NO can be mediated through the activation of soluble guanylate cyclase (sGC), which leads to increased production of cGMP and activation of cGMP-dependent kinases (PKG). We found that both the sGC inhibitor 1H-(1,2,4) oxadiazolo(4,3-a)quinoxalin-1-one (ODQ) and the cGMP analogue 8-bromoguanosine 3′:5′-cyclic monophosphate (8-Br-cGMP) reduced melanosome aggregation, whereas the PKG inhibitor KT582 did not. Our results demonstrate that melanosome aggregation depends on synthesis of NO, and NO deprivation causes dispersion. It seems, thus, as if NO and cGMP are essential and can regulate melanosome translocation.
  •  
4.
  • Nilsson, Ulrika K., et al. (författare)
  • Inhibition of Ca2 +/calmodulin-dependent protein kinase or epidermal growth factor receptor tyrosine kinase abolishes lysophosphatidic acid-mediated DNA-synthesis in human myometrial smooth muscle cells
  • 2003
  • Ingår i: Cell Biology International. - 1065-6995. ; 27:4, s. 341-347
  • Tidskriftsartikel (refereegranskat)abstract
    • Human myometrial smooth muscle cells (SMCs) were used to evaluate the proliferative activity of lysophosphatidic acid (LPA). This study specifically focuses on the role of Ca2+/calmodulin-dependent protein (CaM) kinase and epidermal growth factor (EGF) receptor tyrosine kinase. Myometrial SMCs were cultured from biopsies taken at Cesarean sections. The expression of LPA receptors was determined by reverse transcriptase polymerase chain reaction (RT-PCR), and DNA-synthesis was measured by [3H]thymidine incorporation. LPA1, LPA2, and LPA3receptor subtypes were detected in the SMCs using RT-PCR. KN-62, an inhibitor of CaM kinase, and Tyrphostin AG 1478, an inhibitor of EGF receptor tyrosine kinase, dose-dependently decreased LPA-stimulated [3H]thymidine incorporation. Furthermore, BB-3103, an inhibitor of matrix metalloproteinases (MMPs), also reduced DNA-synthesis induced by LPA in these cells. The results show, for the first time, that human myometrial SMCs express all three known LPA receptor subtypes. Growth stimulatory effects of LPA on myometrial SMCs seems to be mediated by several pathways, where transactivation of EGF receptors through MMPs appears to be of importance. Furthermore, CaM kinase activity may be critical for LPA signaling since inhibition of CaM kinase totally abolish the proliferative effect of LPA.
  •  
5.
  • Nilsson, Ulrika K., et al. (författare)
  • Lack of stereospecificity in lysophosphatidic acid enantiomerinduced calcium mobilization in human erythroleukemia cells
  • 2003
  • Ingår i: Lipids. - 0024-4201. ; 38:10, s. 1057-1064
  • Tidskriftsartikel (refereegranskat)abstract
    • Lysophosphatidic acid (LPA) is a lipid mediator that, among several other cellular responses, can stimulate cells to mobilize calcium (Ca2+). LPA is known to activate at least three different subtypes of G protein-coupled receptors. These receptors can then stimulate different kinds of G proteins. In the present study, LPA and LPA analogs were synthesized from (R)- and (S)-glycidol and used to characterize the ability to stimulate Ca2+ mobilization. The cytosolic Ca2+ concentration ([Ca2+]i) was measured in fura-2-acetoxymethylester-loaded human erythroleukemia (HEL) cells. Furthermore, a reverse transcriptase polymerase chain reaction was used to characterize LPA receptor subtypes expressed in HEL cells. The results show that HEL cells mainly express LPA1 and LPA2, although LPA3 might possibly be expressed as well. Moreover, LPA and its analogs concentration-dependently increased [Ca2+]i in HEL cells. The response involved both influx of extracellular Ca2+ and release of Ca2+ from intracellular stores. This is the first time the unnatural (S)-enantiomer of LPA, (S)-3-O-oleoyl-1-O-phosphoryl-glycerol, has been synthesized and studied according to its ability to activate cells. The results indicate that this group of receptors does not discriminate between (R)- and (S)-enantiomers of LPA and its analogs. When comparing ether analogs having different hydrocarbon chain lengths, the tetradecyl analog (14 carbons) was found to be the most effective in increasing [Ca2+]i. Pertussis toxin treatment of the HEL cells resulted in an even more efficient Ca2+ mobilization stimulated by LPA and its analogs. Furthermore, at repeated incubation with the same ligand no further increase in [Ca2+]i was obtained. When combining LPA with the ether analogs no suppression of the new Ca2+ signal occurred. All these findings may be of significance in the process of searching for specific agonists and antagonists of the LPA receptor subtypes.
  •  
6.
  • Nilsson, Ulrika K., et al. (författare)
  • Synergistic activation of human platelets by adrenaline and lysophosphatidic acid
  • 2002
  • Ingår i: Haematologica. - 0390-6078 .- 1592-8721. ; 87:7, s. 730-739
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND OBJECTIVES: Platelet reactivity is regulated by various important bioactive and physiologic substances. The objective of this study was to characterize lysophosphatidic acid (LPA)-triggered responses in human platelets. In addition, the effect of LPA was compared with that of other activators and possible synergistic interactions were evaluated. DESIGN AND METHODS: LPA-triggered cytosolic Ca(2+) responses were measured using fura-2-loaded platelets in a spectrofluorometer. Furthermore, platelet aggregation and secretion were analyzed in a lumi-aggregometer and protein tyrosine phosphorylation was detected with the Western blot technique. RESULTS: LPA dose-dependently increased cytosolic Ca(2+) concentration ([Ca(2+)](i)) in platelets. This response involved both influx of extracellular Ca(2+) and release of Ca(2+) from intracellular stores. However, in comparison with other platelet agonists, i.e. thrombin and adenosine 5'-diphosphate (ADP), LPA was a very weak Ca(2+)-elevating agent. Furthermore, we observed that the LPA-induced rise in [Ca(2+)](i) was markedly suppressed by cyclic nucleotide-elevating agents. In functional studies, LPA failed to stimulate platelet aggregation and secretion. However, in combination with adrenaline, another weak platelet agonist, LPA could induce an irreversible and complete aggregatory response. There was an individual variation in aggregatory response and tyrosine phosphorylation when LPA and adrenaline were combined. These agents induced a powerful response on platelets from some individuals, but had a weak or no effect on others. INTERPRETATION AND CONCLUSIONS: The present study shows, for the first time, that isolated platelets from some healthy blood donors respond synergistically to a combination of LPA and adrenaline. Platelet activation is a key step in distinguishing normal hemostasis from pathologic hemostasis. Increased knowledge about this mechanism might help to predict individual responses and provide new insights into molecular mechanisms responsible for pathologic thrombosis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy