SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Swedberg Göte) srt2:(2010-2014)"

Sökning: WFRF:(Swedberg Göte) > (2010-2014)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Buwembo, William, et al. (författare)
  • Point Mutations in the folP Gene Partly Explain Sulfonamide Resistance of Streptococcus mutans
  • 2013
  • Ingår i: International Journal of Microbiology. - : Hindawi Limited. - 1687-918X .- 1687-9198. ; 2013, s. 367021-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cotrimoxazole inhibits dhfr and dhps and reportedly selects for drug resistance in pathogens. Here,Streptococcus mutansisolates were obtained from saliva of HIV/AIDS patients taking cotrimoxazole prophylaxis in Uganda. The isolates were tested for resistance to cotrimoxazole and theirfolPDNA (which encodes sulfonamide-targeted enzyme dhps) cloned in pUC19. A set of recombinant plasmids carrying different point mutations in cloned folP were separately transformed intofolP-deficientEscherichia coli. Using sulfonamide-containing media, we assessed the growth offolP-deficient bacteria harbouring plasmids with differingfolPpoint mutations. Interestingly, clonedfolPwith three mutations (A37V, N172D, R193Q) derived fromStreptococcus mutans8 conferred substantial resistance against sulfonamide tofolP-deficient bacteria. Indeed, change of any of the three residues (A37V, N172D, and R193Q) in plasmid-encodedfolPdiminished the bacterial resistance to sulfonamide while removal of all three mutations abolished the resistance. In contrast, plasmids carrying four other mutations (A46V, E80K, Q122H, and S146G) infolPdid not similarly confer any sulfonamide resistance tofolP-knockout bacteria. Nevertheless, sulfonamide resistance (MIC = 50 μM) offolP-knockout bacteria transformed with plasmid-encodedfolPwas much less than the resistance (MIC = 4 mM) expressed by chromosomally-encodedfolP. Therefore,folPpoint mutations only partially explain bacterial resistance to sulfonamide.
  •  
2.
  • Enweji, Nizar (författare)
  • Dynamics of Resistant Plasmodium falciparum Parasites
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Persistence of drug resistant Plasmodium falciparum is a major problem to management and control malaria in endemic areas. The focus of this thesis was to study the dynamics of resistant P. falciparum parasites. The study was performed in two African countries: 1) Sudan: Asar village in eastern Sudan, here we examined the persistence of drug sensitive and resistant P. falciparum genotypes among individuals with single-clone and multiple clones infection during the dry season. We genotyped microsatellite loci in the vicinity of the dihydrofolate reductase gene (dhfr) and the dihydropteroate synthase gene (dhps). Microsatellite investigation showed that asymptomatic parasitemia persisted in some patients for several months throughout the dry season and into the next transmission season. In some samples mixed infections were detected, and we noted several cases where the microsatellite haplotype varied from month to month, suggesting turnover of different parasite populations in the blood. This demonstrates that even during asymptomatic infections there can be dynamics within the parasite population in an individual. In addition, we calculated the parasite density throughout the dry season to the next transmission season by using allele-specific quantitative PCR. Parasite density during the dry season fluctuated, but was generally lower than in the first transmission season. A significant difference (P<0.05) between dry and first transmission season was found in regard to the parasite density, whereas no significant difference was observed when dry and second transmission season were compared (P>0.05). 2) Ethiopia: West Arsi zone, one of the malaria endemic zones of the Oromia region. In the first study we determined the prevalence of asymptomatic malaria carriages from November-December 2012. According to PCR the prevalence of sub-microscopic P. falciparum carriage was 19.2%, microscopy-based prevalence was 3.7% while the prevalence was 6.9% using RDT. Based on this, PCR was considered a better tool for measuring Plasmodium prevalence than microscopy and RDT. A second study addressed the genetic diversity of chloroquine resistance (CQR) in P. falciparum by analysing four microsatellite markers in and around the pfcrt gene. Although CQ was withdrawn for more than a decade, 100% of the parasites still carried the Pfcrt K76T mutation. Only the CVIET haplotype was identified. Based on combinations of MS markers, seven different Ethiopian CQR variants (E1-E7) were identified. Both intronic and MS flanking the pfcrt gene showed low levels of diversity.
  •  
3.
  • Golassa, Lemu, et al. (författare)
  • Detection of a substantial number of sub-microscopic Plasmodium falciparum infections by polymerase chain reaction : a potential threat to malaria control and diagnosis in Ethiopia
  • 2013
  • Ingår i: Malaria Journal. - : Springer Science and Business Media LLC. - 1475-2875 .- 1475-2875. ; 12, s. 352-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Prompt and effective malaria diagnosis not only alleviates individual suffering, but also decreases malaria transmission at the community level. The commonly used diagnostic methods, microscopy and rapid diagnostic tests, are usually insensitive at very low-density parasitaemia. Molecular techniques, on the other hand, allow the detection of low-level, sub-microscopic parasitaemia. This study aimed to explore the presence of sub-microscopic Plasmodium falciparum infections using polymerase chain reaction (PCR). The PCR-based parasite prevalence was compared against microscopy and rapid diagnostic test (RDT). Methods: This study used 1,453 blood samples collected from clinical patients and sub-clinical subjects to determine the prevalence of sub-microscopic P. falciparum carriages. Subsets of RDT and microscopy negative blood samples were tested by PCR while all RDT and microscopically confirmed P. falciparum-infected samples were subjected to PCR. Finger-prick blood samples spotted on filter paper were used for parasite genomic DNA extraction. Results: The prevalence of sub-microscopic P. falciparum carriage was 19.2% (77/400) (95% CI = 15.4-23.1). Microscopy-based prevalence of P. falciparum infection was 3.7% (54/1,453) while the prevalence was 6.9% (100/1,453) using RDT alone. Using microscopy and PCR, the estimated parasite prevalence was 20.6% if PCR were performed in 1,453 blood samples. The prevalence was estimated to be 22.7% if RDT and PCR were used. Of 54 microscopically confirmed P. falciparum-infected subjects, PCR detected 90.7% (49/54). Out of 100 RDT-confirmed P. falciparum infections; PCR detected 80.0% (80/100). The sensitivity of PCR relative to microscopy and RDT was, therefore, 90.7% and 80%, respectively. The sensitivity of microscopy and RDT relative to PCR was 16.5 (49/299) and 24.2% (80/330), respectively. The overall PCR-based prevalence of P. falciparum infection was 5.6- and 3.3 fold higher than that determined by microscopy and RDT, respectively. None of the sub-microscopic subjects had severe anaemia, though 29.4% had mild anaemia (10-11.9 g/dl). Conclusions: Asymptomatic, low-density malaria infection was common in the study area and PCR may be a better tool for measuring Plasmodium prevalence than microscopy and RDT. The inadequate sensitivity of the diagnostic methods to detect substantial number of sub-microscopic parasitaemia would undoubtedly affect malaria control efforts, making reduction of transmission more difficult. RDT and microscopy-based prevalence studies and subsequent reports of reduction in malaria incidence underestimate the true pictures of P. falciparum infections in the community. PCR, on the other hand, seems to have reasonable sensitivity to detect a higher number of infected subjects with low and sub-microscopic parasite densities than RDTs or microscopy.
  •  
4.
  • Golassa, Lemu, et al. (författare)
  • High prevalence of pfcrt-CVIET haplotype in isolates from asymptomatic and symptomatic patients in south-central Oromia, Ethiopia
  • 2014
  • Ingår i: Malaria Journal. - : Springer Science and Business Media LLC. - 1475-2875 .- 1475-2875. ; 13, s. 120-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: As a result of extensive chloroquine resistance (CQR) in Plasmodium falciparum in late 1990s, Ethiopia replaced CQ with sulphadoxine-pyrimethamine (SP) as first-line drug, which in turn was replaced by artemisinin combination therapy in 2004. Plasmodium falciparum resistance to CQ is determined by the mutation at K76T of the P. falciparum chloroquine resistance transporter (pfcrt) gene. Understanding diversity in the P. falciparum genome is crucial since it has the potential to influence important phenotypes of the parasite such as drug resistance. Limited data is available regarding the type of pfcrt mutant allelic type, the effect of CQ withdrawal and diversity of the parasite population in south-central Oromia, Ethiopia. Methods: Finger-pricked blood spotted on Whatman 3MM filter papers were collected from falciparum malaria patients. Parasite DNA was extracted from individual blood spots on the filter papers. The presence of K76T mutations was determined using nested PCR for all isolates. Complete sequencing of mutations in pfcrt 72-76 was done for a set of randomly selected resistant isolates. Four microsatellite (MS) markers were analysed to determine the heterozygosity. Results: Although CQ was withdrawn for more than a decade, 100% of the parasites still carried the pfcrt K76T mutation. All isolates were mutant at the K76T polymorphism. Based on combinations of MS markers, seven different Ethiopian CQR variants (E1-E7) were identified. Heterozygosity (He) for MS flanking the pfcrt chloroquine resistance allele ranged from 0.00 (mscrt -29, -29.268 kb) to 0.21 (mscrt -2, -2.814 kb). H-e ranged from 0.00 (msint 3, 0 kb) to 0.19 (msint 2, 0 kb) for MS within the pfcrt gene. Both intronic and MS flanking the pfcrt gene showed low levels of diversity. Conclusion: pfcrt CQR allele seems to be fixed in the study area. Of the different haplotypes associated with CQR, only the CVIET genotype was identified. No reversal to the wild-type has occurred in Ethiopia unlike in many Africa countries where CQR parasites declined after cessation of CQ use. Decreased diversity in CQR isolates surrounding pfcrt suggests CQ selection and homogenization among CQR parasite population. While mutation in msint 3 and mscrt -29 of the mutant pfcrt allele is being fixed, it seems that mutations in msint 2 and mscrt -2 are still evolving and may indicate the start of re-diversification of the population from a fixed 76 T population.
  •  
5.
  • Kamugisha, Erasmus, et al. (författare)
  • Detecting adenosine triphosphatase 6 point mutations that may be associated with Plasmodium falciparum resistance to artemisinin : prevalence at baseline, before policy change in Uganda
  • 2011
  • Ingår i: Tanzania Journal of Health Research. - 1821-6404. ; 13:1, s. 50-60
  • Tidskriftsartikel (refereegranskat)abstract
    • The artemisinin based combination therapy (ACT) of artemether and lumefantrine (Co-artem) has recently replaced chloroquine and fansidar as the first line treatment policy drug in Uganda. It is necessary to develop practical procedures to monitor the likely emergence and spread of artemisinin resistant P. falciparum strains. We have analyzed the genotypes of PfATP6 in parasites from 300 stored filter paper samples from malaria patients who were diagnosed and treated in the years 1999 to 2004 at three field sites in Uganda. This is a period just prior to introduction of Co-artem. In order to develop a simple molecular procedure for mutation detection, regions of PfATP6 encoding protein domains important in artemisinin binding was amplified by nested PCR. Three DNA products, which together contain most of the coding region of amino acids located within the putative active site of pfATP6 were readily amplified. The amplified DNA was digested by restriction enzymes and the fragments sized by agarose gel electrophoresis. For the important codons 260, 263 and 769, methods using engineered restriction sites were employed. We did not find mutations at codons for the key residues Lys 260, Leu263, Gln266, Ser769 and Asn1039. Nucleotide sequencing of pfATPase6 gene DNA from at least 15 clinical isolates confirmed the above findings and suggested that mutations at these amino acid residues have not emerged in our study sites.
  •  
6.
  • Kamugisha, Erasmus, et al. (författare)
  • Efficacy of artemether-lumefantrine in treatment of malaria among under-fives and prevalence of drug resistance markers in Igombe-Mwanza, north-western Tanzania
  • 2012
  • Ingår i: Malaria Journal. - 1475-2875 .- 1475-2875. ; 11, s. 58-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Drug resistance to anti-malarials is a major public health problem worldwide. This study aimed at establishing the efficacy of artemether-lumefantrine (ACT) in Igombe-Mwanza, north-western Tanzania after a few years of ACT use, and establish the prevalence of mutations in key targets for artemisinin, chloroquine and sulphadoxine/pyrimetamine (SP) drugs. Methods: A prospective single cohort study was conducted at Igombe health centre using artemether-lumefantrine combination therapy between February 2010 and March 2011. The follow-up period was 28 days and outcome measures were according to WHO guidelines. Blood was collected on Whatman filter paper for DNA analysis. DNA extraction was done using TRIS-EDTA method, and mutations in Pfcrt, Pfmdr1, Pfdhfr, Pfdhps and Pfatp6 were detected using PCR-RFLP methods established previously. Results: A total of 103 patients completed the 28 days follow-up. The mean haemoglobin was 8.9 g/dl (range 5.0 to 14.5 g/dl) and mean parasite density was 5,608 parasites/mu l. Average parasite clearance time was 34.7 hours and all patients cleared the parasites by day 3. There was no early treatment failure in this study. Late clinical failure was seen in three (2.9%) patients and late parasitological failure (LPF) was seen in two (1.9%). PCR-corrected LPF was 1% and adequate clinical and parasitological response was 96%. The majority of parasites have wild type alleles on pfcrt 76 and pfmdr1 86 positions being 87.8% and 93.7% respectively. Mutant parasites predominated at pfdhfr gene at the main three positions 108, 51 and 59 with prevalence of 94.8%, 75.3% and 82.5% respectively. Post-treatment parasites had more wild types of pfdhps at position 437 and 540 than pre-treatment parasites. No mutation was seen in pfatp6 769 in re-infecting or recrudescing parasites. Conclusion: The efficacy of artemether-lumefantrine for treatment of uncomplicated malaria is still high in the study area although the rate of re-infection is higher than previously reported. Parasite clearance after 48 hours was lower compared to previous studies. The prevalence of wild type allele pfcrt 76 K and pfmdr1 86 N was high in the study area while markers for SP resistance is still high. Artemether-lumefantrine may be selecting for wild type alleles on both positions (437 and 540) of pfdhps.
  •  
7.
  • Kamugisha, Erasmus, et al. (författare)
  • Large differences in prevalence of Pfcrt and Pfmdr1 mutations between Mwanza, Tanzania and Iganga, Uganda : a reflection of differences in policies regarding withdrawal of chloroquine?
  • 2012
  • Ingår i: Acta Tropica. - : Elsevier BV. - 0001-706X .- 1873-6254. ; 121:2, s. 148-151
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Malaria is still a major public health problem in the world and sub-Saharan Africa is one of the most affected areas. Efforts to control malaria are highly affected by drug resistance to commonly used antimalarials. The introduction of artemisinin based combination therapy (ACT) as a first line drug seems to be a major step in treatment of uncomplicated malaria, though search for drugs to combine with artemisinins still continues. There have been reports on increased prevalence of the wild type markers Pfcrt 76K and Pfmdr1 86N in some African countries and ideas of using chloroquine (CQ) in intermittent presumptive treatment for adults (IPTa) is coming up. The common combination of artemether and lumefantrine even selects for parasites that are wild type at these positions. This study is comparing prevalence of mutation at these two positions in two East African countries with ACT as their first line drug but following somewhat different drug policies regarding CQ. In Tanzania CQ was stopped in 2001 but in Uganda CQ was retained in combination with sulfadoxine-pyrimethamine (SP) and used in home based management of fever for some time. SP is still used in IPT for pregnant women. METHODS: Blood smears and dried blood spots on Whatman filter papers were collected from 100 patients with uncomplicated malaria in Mwanza, Tanzania and 100 patients from Iganga, Uganda. DNA was extracted from all samples using Tris EDTA method. PCR and RFLP were performed and sequencing done on Pfcrt amplification products. RESULTS: The prevalence of K76T mutations at Pfcrt in samples from Mwanza, Tanzania was 40.5% (34/84) and 100% (100/100) in samples from Iganga, Uganda. Prevalence of N86Y mutations in Pfmdr1 was 16.9% (13/77) and 77.7% (63/81) in samples from Mwanza and Iganga, respectively. The re-emergence of CQ sensitive isolates in Mwanza, Tanzania showed the haplotype CVMNK typical for wild type isolates. CONCLUSIONS: The prevalence of CQ resistant parasites in Mwanza, Tanzania is low compared to the existing high level of resistant parasites in Iganga, Uganda. This could be an indication that CQ may become useful in the future in Tanzania. This study shows clearly that there is a difference in mutations at these positions in these two countries implementing similar but somewhat different drug policies. In Uganda the drug resistance has reached fixation while in Tanzania the prevalence is going down.
  •  
8.
  • Kheir, Amany (författare)
  • Factors Influencing Evolution to Antimalarial Drug Resistance in Plasmodium falciparum in Sudan and The Gambia
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Drug resistance is a major obstacle to management and control of malaria and currently progressing at a rapid rate across Africa. This thesis has examined factors influencing evolution of resistant P. falciparum at two sites in Africa, including parasite migration, cross mating and fitness cost of resistance. In Asar village, eastern Sudan, the frequencies of drug sensitive and resistant parasites were monitored throughout the dry season in the absence of anti-malarial drug usage to examine whether persistence of resistant parasites is reduced in the absence of drug pressure. Two cohorts of P. falciparum infected patients were treated with chloroquine in the transmission season (Oct-Dec), and followed monthly in the dry season into the next transmission season. A large proportion of the cohort maintained sub-patent asymptomatic P. falciparum infections throughout the entire study period. Alleles of the chloroquine resistance transporter (Pfcrt) and multi-drug resistance protein (Pfmdr1) were examined. Mutant alleles of Pfcrt reached fixation following CQ treatment and remained high in the transmission season. However, at the start of the dry season, wild type alleles of both genes started to emerge and increased significantly in frequency as the season progressed. The mutant Pfcrt haplotype was invariably CVIET, indicating migration of CQ resistant parasites into an area; otherwise the CVMNK haplotype is normal. In addition, microsatellite haplotypes of dihydrofolate reductase (dhfr) gene and dihydropteroate synthase (dhps) genes, which control the parasite response to pyrimethamine and sulfadoxine respectively, were characterized. One major dhfr haplotype with double dhfr mutations and two major mutant dhps haplotypes were seen in eastern Sudan. These haplotypes are distinct from those prevailing in other African countries, suggesting the likely local origin of dhfr and dhps haplotypes conferring drug resistance. Transmission capacities of different P. falciparum clones within a single infection in The Gambia have a high ability to produce gametocytes and infect Anopheles mosquitoes even when they exist at levels not detectable by microscopy and PCR. These findings emphasize the crucial role of gametocyte complexity and infectivity in generating the remarkable diversity of P. falciparum genotypes seen in infected people. Parasites with different resistant dihydrofolate reductase (dhfr) haplotypes have the ability to infect Anopheles mosquitoes following drug treatment, and cross-mating between parasites with different dhfr haplotypes was detected. Our results showed that the major dhfr haplotype in the Gambia is similar to the common one seen in other African countries, suggesting that parasite migration plays a major role in spread of resistance. Indeed, the dominant resistant haplotype seen in infected patients was readily transmitted to infect mosquitoes.
  •  
9.
  • Kheir, Amany, et al. (författare)
  • Transmission and Cross-Mating of High-Level Resistance Plasmodium falciparum Dihydrofolate Reductase Haplotypes in The Gambia
  • 2010
  • Ingår i: American Journal of Tropical Medicine and Hygiene. - : American Society of Tropical Medicine and Hygiene. - 0002-9637 .- 1476-1645. ; 82:4, s. 535-541
  • Tidskriftsartikel (refereegranskat)abstract
    • A high-level pyrimethamine resistance Plasmodium falciparum lineage with triple dihydrofolate reductase (dhfr) mutations prevails across Africa. However, additional minority lineages were seen. We examined transmission success of mutant dhfr haplotypes among 22 children in The Gambia and 60 infected Anopheles gambiae mosquitoes fed on their blood. Additional polymorphic genes of the gametocyte-specific protein (pfg377) and merozoite surface protein-1 (MSP-1) were examined. Similarities were seen between pfg377 and MSP-1 alleles in children and mosquitoes and evidence of cross-mating between different parasite genotypes was seen in some infected mosquitoes, reflecting high transmission success of existing clones. With regard to dhfr, 16 haplotypes were seen among the children: 2 carried double mutations and 14 carried triple mutations. However, only nine haplotypes, all with triple mutations, were detected among mosquitoes. A single triple-mutant dhfr haplotype, similar to that in other countries in Africa, predominated among children (42%) and mosquitoes (60%), supporting the hypothesis of migration of this haplotype across Africa. However, evidence of cross-mating between the above haplotypes signifies the role of local evolution.
  •  
10.
  • Marwa, Karol J., et al. (författare)
  • Cytochrome P450 single nucleotide polymorphisms in an indigenous Tanzanian population : a concern about the metabolism of artemisinin-based combinations
  • 2014
  • Ingår i: Malaria Journal. - : Springer Science and Business Media LLC. - 1475-2875 .- 1475-2875. ; 13, s. 420-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Artemisinin-based combinations currently recommended for treatment of uncomplicated Plasmodium falciparum malaria in many countries of sub-Saharan Africa are substrates of CYP enzymes. The cytochrome enzyme system is responsible for metabolism of about 80-90% of clinically used drugs. It is, therefore, important to obtain the pharmacogenetics of the population in the region with respect to these combinations and thereby enable practitioners to predict treatment outcomes. The aim of this study was to detect and determine allelic frequencies of CYP2C8*2, CYP2C8*3, CYP3A4*1B, CYP3A5*3 and CYP2B6*6 variant alleles in a Tanzanian indigenous population. Methods: Genomic DNA extraction from blood obtained from 256 participants who escorted patients at Karume Health Centre in Mwanza Tanzania, was carried out using the Gene JET (TM) Genomic DNA purification kit (Thermo Scientific). Genotyping for the cytochrome P450 variant alleles was performed using predesigned primers. Amplification was done by PCR while differentiation between alleles was done by restriction fragment length polymorphism (PCR-RFLP) (for CYP2C8*2, CYP2C8*3) and sequencing (for CYP2B6*6, CYP3A5*3 and CYP3A4*1B). Results: CYP2C8*2, CYP2C8*3, CYP3A5*3, CYP3A4*1B and CYP2B6*6 variant allelic frequencies were found to be 19,10,16,78 and 36% respectively. Conclusion: Prevalence of CYP2C8*2, CYP3A5*3, CYP3A4*1B and CYP2B6*6 mutations in a Tanzanian population/ subjects are common. The impact of these point mutations on the metabolism of anti-malarial drugs, particularly artemisinin-based combinations, and their potential drug-drug interactions (DDIs) needs to be further evaluated.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy