SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Swinyard B. M.) srt2:(2012)"

Sökning: WFRF:(Swinyard B. M.) > (2012)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Acke, B., et al. (författare)
  • Herschel images of Fomalhaut An extrasolar Kuiper belt at the height of its dynamical activity
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 540, s. Article Number: A125 -
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Fomalhaut is a young (2 +/- 1 x 10(8) years), nearby (7.7 pc), 2 M-circle dot star that is suspected to harbor an infant planetary system, interspersed with one or more belts of dusty debris. Aims. We present far-infrared images obtained with the Herschel Space Observatory with an angular resolution between 5.7 '' and 36.7 '' at wavelengths between 70 mu m and 500 mu m. The images show the main debris belt in great detail. Even at high spatial resolution, the belt appears smooth. The region in between the belt and the central star is not devoid of material; thermal emission is observed here as well. Also at the location of the star, excess emission is detected. We aim to construct a consistent image of the Fomalhaut system. Methods. We use a dynamical model together with radiative-transfer tools to derive the parameters of the debris disk. We include detailed models of the interaction of the dust grains with radiation, for both the radiation pressure and the temperature determination. Comparing these models to the spatially resolved temperature information contained in the images allows us to place strong constraints on the presence of grains that will be blown out of the system by radiation pressure. We use this to derive the dynamical parameters of the system. Results. The appearance of the belt points toward a remarkably active system in which dust grains are produced at a very high rate by a collisional cascade in a narrow region filled with dynamically excited planetesimals. Dust particles with sizes below the blow-out size are abundantly present. The equivalent of 2000 one-km-sized comets are destroyed every day, out of a cometary reservoir amounting to 110 Earth masses. From comparison of their scattering and thermal properties, we find evidence that the dust grains are fluffy aggregates, which indicates a cometary origin. The excess emission at the location of the star may be produced by hot dust with a range of temperatures, but may also be due to gaseous free-free emission from a stellar wind.
  •  
2.
  • Groenewegen, M. A. T., et al. (författare)
  • An independent distance estimate to cw leonis
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 543, s. L8-
  • Tidskriftsartikel (refereegranskat)abstract
    • CW Leo has been observed six times between October 2009 and June 2012 with the SPIRE instrument on board the Herschel satellite. Variability has been detected in the flux emitted by the central star with a period of 639 +/- 4 days, in good agreement with determinations in the literature. Variability is also detected in the bow shock around CW Leo that had previously been detected in the ultraviolet and Herschel PACS/SPIRE data. Although difficult to prove directly, our working hypothesis is that this variability is directly related to that of the central star. In this case, fitting a sine curve with the period fixed to 639 days results in a time-lag in the variability between bow shock and the central star of 402 +/- 37 days. The orientation of the bow shock relative to the plane of the sky is unknown (but see below). For an inclination angle of zero degrees, the observed time-lag translates into a distance to CW Leo of 130 +/- 13 pc, and for non-zero inclination angles the distance is smaller. Fitting the shape of the bow shock with an analytical model (Wilkin 1996, ApJ, 459, L31), the effect of the inclination angle on the distance may be estimated. Making the additional assumption that the relative peculiar velocity between the interstellar medium (ISM) and CW Leo is determined entirely by the star space velocity with respect to the local standard of rest (i.e. a stationary ISM), the inclination angle is found to be (-33.3 +/- 0.8)degrees based on the observed proper motion and radial velocity. Using the Wilkin model, our current best estimate of the distance to CW Leo is 123 +/- 14 pc. For a distance of 123 pc, we derive a mean luminosity of 7790 +/- 150 L-circle dot (internal error).
  •  
3.
  • Tinetti, G., et al. (författare)
  • EChO : Exoplanet characterisation observatory
  • 2012
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 34:2, s. 311-353
  • Tidskriftsartikel (refereegranskat)abstract
    • A dedicated mission to investigate exoplanetary atmospheres represents a major milestone in our quest to understand our place in the universe by placing our Solar System in context and by addressing the suitability of planets for the presence of life. EChO-the Exoplanet Characterisation Observatory-is a mission concept specifically geared for this purpose. EChO will provide simultaneous, multi-wavelength spectroscopic observations on a stable platform that will allow very long exposures. The use of passive cooling, few moving parts and well established technology gives a low-risk and potentially long-lived mission. EChO will build on observations by Hubble, Spitzer and ground-based telescopes, which discovered the first molecules and atoms in exoplanetary atmospheres. However, EChO's configuration and specifications are designed to study a number of systems in a consistent manner that will eliminate the ambiguities affecting prior observations. EChO will simultaneously observe a broad enough spectral region-from the visible to the mid-infrared-to constrain from one single spectrum the temperature structure of the atmosphere, the abundances of the major carbon and oxygen bearing species, the expected photochemically-produced species and magnetospheric signatures. The spectral range and resolution are tailored to separate bands belonging to up to 30 molecules and retrieve the composition and temperature structure of planetary atmospheres. The target list for EChO includes planets ranging from Jupiter-sized with equilibrium temperatures Teq up to 2,000 K, to those of a few Earth masses, with Teq \u223c 300 K. The list will include planets with no Solar System analog, such as the recently discovered planets GJ1214b, whose density lies between that of terrestrial and gaseous planets, or the rocky-iron planet 55 Cnc e, with day-side temperature close to 3,000 K. As the number of detected exoplanets is growing rapidly each year, and the mass and radius of those detected steadily decreases, the target list will be constantly adjusted to include the most interesting systems. We have baselined a dispersive spectrograph design covering continuously the 0. 4-16 μm spectral range in 6 channels (1 in the visible, 5 in the InfraRed), which allows the spectral resolution to be adapted from several tens to several hundreds, depending on the target brightness. The instrument will be mounted behind a 1. 5 m class telescope, passively cooled to 50 K, with the instrument structure and optics passively cooled to \u223c45 K. EChO will be placed in a grand halo orbit around L2. This orbit, in combination with an optimised thermal shield design, provides a highly stable thermal environment and a high degree of visibility of the sky to observe repeatedly several tens of targets over the year. Both the baseline and alternative designs have been evaluated and no critical items with Technology Readiness Level (TRL) less than 4-5 have been identified. We have also undertaken a first-order cost and development plan analysis and find that EChO is easily compatible with the ESA M-class mission framework. © 2012 Springer Science+Business Media B.V.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy