SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Swinyard B. M.) srt2:(2015)"

Sökning: WFRF:(Swinyard B. M.) > (2015)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tinetti, Giovanna, et al. (författare)
  • The EChO science case
  • 2015
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 40:2-3, s. 329-391
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune-all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10(-4) relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 mu m with a goal of covering from 0.4 to 16 mu m. Only modest spectral resolving power is needed, with R similar to 300 for wavelengths less than 5 mu m and R similar to 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m(2) is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m(2) telescope, diffraction limited at 3 mu m has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300-3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright "benchmark" cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of > 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO's launch and enable the atmospheric characterisation of hundreds of planets.
  •  
2.
  • Wright, G. S., et al. (författare)
  • The Mid-Infrared Instrument for the James Webb Space Telescope, II: Design and Build
  • 2015
  • Ingår i: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 127:953, s. 595-611
  • Tidskriftsartikel (refereegranskat)abstract
    • The Mid-InfraRed Instrument (MIRI) on the James Webb Space Telescope (JWST) provides measurements over the wavelength range 5 to 28: 5 mu m. MIRI has, within a single "package," four key scientific functions: photometric imaging, coronagraphy, single-source low-spectral resolving power (R similar to 100) spectroscopy, and medium-resolving power (R similar to 1500 to 3500) integral field spectroscopy. An associated cooler system maintains MIRI at its operating temperature of
  •  
3.
  • Matsuura, M., et al. (författare)
  • A STUBBORNLY LARGE MASS OF COLD DUST IN THE EJECTA OF SUPERNOVA 1987A
  • 2015
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 800:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present new Herschel photometric and spectroscopic observations of Supernova 1987A, carried out in 2012. Our dedicated photometric measurements provide new 70 mu m data and improved imaging quality at 100 and 160 mu m compared to previous observations in 2010. Our Herschel spectra show only weak CO line emission, and provide an upper limit for the 63 mu m [O-I] line flux, eliminating the possibility that line contaminations distort the previously estimated dustmass. The far-infrared spectral energy distribution (SED) is well fitted by thermal emission from cold dust. The newly measured 70 mu m flux constrains the dust temperature, limiting it to nearly a single temperature. The far-infrared emission can be fitted by 0.5 +/- 0.1M(circle dot) of amorphous carbon, about a factor of two larger than the current nucleosynthetic mass prediction for carbon. The observation of SiO molecules at early and late phases suggests that silicates may also have formed and we could fit the SED with a combination of 0.3M(circle dot) of amorphous carbon and 0.5M(circle dot) of silicates, totalling 0.8M(circle dot) of dust. Our analysis thus supports the presence of a large dust reservoir in the ejecta of SN 1987A. The inferred dust mass suggests that supernovae can be an important source of dust in the interstellar medium, from local to high-redshift galaxies.
  •  
4.
  • Van de Steene, G. C., et al. (författare)
  • Herschel imaging of the dust in the Helix nebula (NGC 7293)
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 574
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. In our series of papers presenting the Herschel imaging of evolved planetary nebulae, we present images of the dust distribution in the Helix nebula (NGC 7293). Methods. Images at 70, 160, 250, 350, and 500 mu m were obtained with the PACS and SPIRE instruments on board the Herschel satellite. Results. The broadband maps show the dust distribution over the main Helix nebula to be u npy and predominantly present in the barrel wall. We determined the spectral energy distribution of the main nebula in a consistent way using Herschel. IRAS. and Planck flux values, The emissivity index of beta = 0.99 +/- 0.09, in combination with the carbon rich molecular chemistry of the nebula, indicates that the dust consists mainly of amorphous carbon. The dust excess emission from the central star disk is detected at 70 pm and the flux measurement agrees with previous measurement. We present the temperature and dust column density maps. The total dust mass across the Helix nebula (without its halo) is determined to be 3.5 x 10(-3) M-circle dot at a distance of 216 pc. The temperature map shows dust temperatures between 22 K and 42 K, which is similar to the kinetic temperature of the molecular gas, confirming that the dust and gas co exist in high density clumps. Archived images are used to compare the location of the dust emission in the far infrared (Herschel) with the ionized (GALEX and H-beta) and molecular (H-2) component. The different emission components are consistent with the Helix consisting of a thick walled barrel-like structure inclined to the line of sight. The radiation field decreases rapidly through the barrel wall.
  •  
5.
  • Matsuura, M., et al. (författare)
  • Detection of Rotational Co Emission from the Red-Supergiants in the Large Magellanic Cloud
  • 2015
  • Ingår i: EAS Publications Series. - : EDP Sciences. - 1633-4760 .- 1638-1963. - 9782759819072 ; 71-72, s. 53-56
  • Konferensbidrag (refereegranskat)abstract
    • It is yet well understood how mass-loss rates from evolved stars depend on metallicities. With a half of the solar metallicity and the distance of only 50 kpc, the evolved stars of the Large Magellanic Cloud (LMC) are an ideal target for studying mass loss at low metallicity. We have obtained spectra of red-supergiants in the LMC, using the Hershel Space Observatory, detecting CO thermal lines fro J=6-5 up to 15-14 lines. Modelling CO lines with non-LTE Radiative transfer code suggests that CO lines intensities can be well explained with high gas-to-dust ratio, with no obvious reduction in mass-loss rate at the LMC. We conclude that the luminosities of the stars are dominant factors on mass-loss rates, rather than the metallicity.
  •  
6.
  • Justtanont, Kay, 1965, et al. (författare)
  • H2O Isotopologues in Extreme OH/IR Stars
  • 2015
  • Ingår i: Astronomical Society of the Pacific Conference Series: Conference on Why Galaxies Care About AGB Stars III: A Closer Look in Space and Time, Vienna, Austria, JUL 28-AUG 01, 2014. - 9781583818794 ; 497, s. 85-89
  • Konferensbidrag (refereegranskat)abstract
    • Using Herschel Space Observatory we we observed isotopologues of H2O in extreme OH/IR stars. We detected strong (H2O)-O-16 and (H2O)-O-17 while the (H2O)-O-18 lines are missing, contrary to the overall galactic oxygen abundance in the interstellar medium and the Sun, where O-18 is more abundant than O-17. Theoretical stellar evolution suggests that O-18 is being destroyed during the hot-bottom burning. This implies that these OH/IR stars come from a population of intermediate-mass stars which have an initial mass >= 5 M-circle dot.
  •  
7.
  • Justtanont, Kay, 1965, et al. (författare)
  • Herschel observations of extreme OH/IR stars: The isotopic ratios of oxygen as a sign-post for the stellar mass
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 578
  • Tidskriftsartikel (refereegranskat)abstract
    • © ESO 2015. Aims. The late stages of stellar evolution are mainly governed by the mass of the stars. Low- and intermediate-mass stars lose copious amounts of mass during the asymptotic giant branch (AGB) which obscure the central star making it difficult to study the stellar spectra and determine the stellar mass. In this study, we present observational data that can be used to determine lower limits to the stellar mass. Methods. Spectra of nine heavily reddened AGB stars taken by the Herschel Space Observatory display numerous molecular emission lines. The strongest emission lines are due to H2O. We search for the presence of isotopologues of H2O in these objects. Results. We detected the 16O and 17O isotopologues of water in these stars, but lines due to H218O are absent. The lack of 18O is predicted by a scenario where the star has undergone hot-bottom burning which preferentially destroys 18O relative to 16O and 17O. From stellar evolution calculations, this process is thought to occur when the stellar mass is above 5 M⊙ for solar metallicity. Hence, observations of different isotopologues of H2O can be used to help determine the lower limit to the initial stellar mass. Conclusions. From our observations, we deduce that these extreme OH/IR stars are intermediate-mass stars with masses of ≥5 M⊙. Their high mass-loss rates of ∼10-4M⊙ yr-1 may affect the enrichment of the interstellar medium and the overall chemical evolution of our Galaxy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy